Formalism of the relativistic dynamics of several point masses and orbit precession in the “ball–point” problem
Teoretičeskaâ i matematičeskaâ fizika, Tome 166 (2011) no. 3, pp. 425-442 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We use the Lagrangian formalism to study the relativistic problem of the dynamics of gravitation between a ball and a point in the framework of the Kozlov–Nikitin approach. The Lagrangian is invariant under the Poincaré group action. We use perturbation theory to establish the existence of precession of the point orbit.
Keywords: theory of relativity, two-body problem, orbit precession.
@article{TMF_2011_166_3_a6,
     author = {Ya. V. Tatarinov},
     title = {Formalism of the~relativistic dynamics of several point masses and orbit precession in the~{\textquotedblleft}ball{\textendash}point{\textquotedblright} problem},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {425--442},
     year = {2011},
     volume = {166},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2011_166_3_a6/}
}
TY  - JOUR
AU  - Ya. V. Tatarinov
TI  - Formalism of the relativistic dynamics of several point masses and orbit precession in the “ball–point” problem
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2011
SP  - 425
EP  - 442
VL  - 166
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2011_166_3_a6/
LA  - ru
ID  - TMF_2011_166_3_a6
ER  - 
%0 Journal Article
%A Ya. V. Tatarinov
%T Formalism of the relativistic dynamics of several point masses and orbit precession in the “ball–point” problem
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2011
%P 425-442
%V 166
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2011_166_3_a6/
%G ru
%F TMF_2011_166_3_a6
Ya. V. Tatarinov. Formalism of the relativistic dynamics of several point masses and orbit precession in the “ball–point” problem. Teoretičeskaâ i matematičeskaâ fizika, Tome 166 (2011) no. 3, pp. 425-442. http://geodesic.mathdoc.fr/item/TMF_2011_166_3_a6/

[1] A. Puankare, Novye metody nebesnoi mekhaniki, V kn. Izbr. trudy, v. 1, 2, Nauka, M., 1971–1972 | MR

[2] G. A. Lorents, A. Puankare, A. Einshtein, G. Minkovskii, Printsip otnositelnosti, Sbornik statei, ONTI, M., 1935

[3] Dzh. Sing, Klassicheskaya dinamika, Fizmatgiz, M., 1963 | MR | Zbl

[4] P. Dirak, “Obobschennaya gamiltonova dinamika”, Variatsionnye printsipy mekhaniki, ed. L. S. Polak, Fizmatgiz, M., 1959, 703–722 | MR | Zbl

[5] P. A. Nikolov, I. T. Todorov, EChAYa, 14:5 (1983), 1092–1111 | MR

[6] V. V. Kozlov, E. M. Nikishin, Vestn. Mosk. un-ta. Ser. matem., mekhan., 1986, no. 5, 11–20 | MR | Zbl

[7] E. M. Nikishin, “Svobodnaya gamiltonova mekhanika v $M^4$ i spetsialnaya teoriya otnositelnosti”, Trudy seminara po vektornomu i tenzornomu analizu, 24, MGU, M., 1988, 141–164 | MR | Zbl

[8] Ya. V. Tatarinov, A. V. Cherkaev, Vestn. Mosk. un-ta. Ser. matem., mekhan., 2007, no. 3, 59–63 | Zbl

[9] K. Sharle, Nebesnaya mekhanika, Nauka, M., 1966 | MR | Zbl

[10] V. I. Arnold, V. V. Kozlov, A. I. Neishtadt, “Matematicheskie aspekty klassicheskoi i nebesnoi mekhaniki”, Dinamicheskie sistemy – 3, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya, 3, ed. R. V. Gamkrelidze, VINITI, M., 1985, 5–290 | DOI | MR | MR | Zbl

[11] V. Pauli, Teoriya otnositelnosti, Nauka, M., 1991 | MR | Zbl

[12] Dzh. Sing, Obschaya teoriya otnositelnosti, IL, M., 1963 | MR | Zbl

[13] Ya. P. Terletskii, Yu. P. Rybakov, Elektrodinamika, Vysshaya shkola, M., 1980

[14] B. A. Dubrovin, S. P. Novikov, A. T. Fomenko, Sovremennaya geometriya. Metody i prilozheniya, v. 2, Geometriya i topologiya mnogoobrazii, Editorial URSS, M., 1986 | MR | MR | Zbl

[15] Ya. V. Tatarinov, Vestn. Mosk. un-ta. Ser. matem., mekhan., 2003, no. 3, 67–76 | MR | Zbl

[16] Ya. V. Tatarinov, Uravneniya klassicheskoi mekhaniki v lakonichnykh formakh, , Izd-vo Tsentra prikladnykh issledovanii pri mekh.-mat. f-te MGU, M., 2005, 88 pp. http://hal.ccsd.cnrs.fr/ccsd-00015612

[17] M. A. Prikhodko, Matem. zametki, 78:5 (2005), 727–744 | DOI | MR | Zbl

[18] M. A. Prikhodko, TMF, 148:3 (2006), 444–458 | DOI | MR | Zbl

[19] V. N. Sorokin, Uprugie stolknoveniya bystrykh elektronov s relyativistskim atomom vodoroda, Preprint Instituta prikladnoi matematiki im. M. V. Keldysha RAN No 71, 2006

[20] V. N. Sorokin, O modeli Kozlova–Nikishina, Preprint Instituta prikladnoi matematiki im. M. V. Keldysha RAN No 24, 2007

[21] B. A. Vorontsov-Velyaminov, Astronomiya. Uchebnik dlya 10 klassa, Prosveschenie, M., 1976

[22] S. Veinberg, Gravitatsiya i kosmologiya. Printsipy i prilozheniya obschei teorii otnositelnosti, Mir, M., 1975

[23] N. P. Konopleva, UFN, 123:4 (1977), 537–563 | DOI

[24] N. T. Rouzver, Perigelii Merkuriya. Ot Levere do Einshteina, Mir, M., 1985

[25] R. A. Asanov, G. N. Afanasev, EChAYa, 27:3 (1996), 713–746