Mots-clés : super soliton solution.
@article{TMF_2011_166_3_a3,
author = {Y. C. Hon and Engui Fan},
title = {Super quasiperiodic wave solutions and asymptotic analysis for $\mathcal N=1$ supersymmetric $\text{KdV}$-type equations},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {366--387},
year = {2011},
volume = {166},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2011_166_3_a3/}
}
TY - JOUR
AU - Y. C. Hon
AU - Engui Fan
TI - Super quasiperiodic wave solutions and asymptotic analysis for $\mathcal N=1$ supersymmetric $\text{KdV}$-type equations
JO - Teoretičeskaâ i matematičeskaâ fizika
PY - 2011
SP - 366
EP - 387
VL - 166
IS - 3
UR - http://geodesic.mathdoc.fr/item/TMF_2011_166_3_a3/
LA - ru
ID - TMF_2011_166_3_a3
ER -
%0 Journal Article
%A Y. C. Hon
%A Engui Fan
%T Super quasiperiodic wave solutions and asymptotic analysis for $\mathcal N=1$ supersymmetric $\text{KdV}$-type equations
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2011
%P 366-387
%V 166
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2011_166_3_a3/
%G ru
%F TMF_2011_166_3_a3
Y. C. Hon; Engui Fan. Super quasiperiodic wave solutions and asymptotic analysis for $\mathcal N=1$ supersymmetric $\text{KdV}$-type equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 166 (2011) no. 3, pp. 366-387. http://geodesic.mathdoc.fr/item/TMF_2011_166_3_a3/
[1] R. Hirota, J. Satsuma, Progr. Theoret. Phys., 57:3 (1977), 797–807 | DOI | MR | Zbl
[2] R. Hirota, The Direct Methods in Soliton Theory, Cambridge Tracts Math., 155, Cambridge University Press, Cambridge | MR | Zbl
[3] X. B. Hu, P. A. Clarkson, J. Phys. A, 28:17 (1995), 5009–5016 | DOI | MR | Zbl
[4] X.-B. Hu, C.-X. Li, J. J. C. Nimmo, G.-F. Yu, J. Phys. A, 38:1 (2005), 195–204 | DOI | MR | Zbl
[5] R. Hirota, Y. Ohta, J. Phys. Soc. Japan, 60:3 (1991), 798–809 | DOI | MR | Zbl
[6] D.-j. Zhang, J. Phys. Soc. Japan, 71:11 (2002), 2649–2656 | DOI | MR | Zbl
[7] K. Sawada, T. Kotera, Progr. Theoret. Phys., 51:5 (1974), 1355–1367 | DOI | MR | Zbl
[8] A. A. Nakamura, J. Phys. Soc. Japan, 47:5 (1979), 1701–1705 | DOI | MR | Zbl
[9] A. Nakamura, J. Phys. Soc. Japan, 48:4 (1980), 1365–1370 | DOI | MR | Zbl
[10] H. H. Dai, E. G. Fan, X. G. Geng, Periodic wave solutions of nonlinear equations by Hirota's bilinear method, arXiv: nlin/0602015
[11] Y. C. Hon, E. G. Fan, Z. Qin, Modern Phys. Lett. B, 22:8 (2008), 547–553 | DOI | MR | Zbl
[12] E. G. Fan, Y. C. Hon, Phys. Rev. E, 78:3 (2008), 036607, 13 pp. | DOI | MR
[13] S. P. Novikov, Funkts. analiz i ego pril., 8:3 (1974), 54–66 | DOI | MR | Zbl
[14] B. A. Dubrovin, Funkts. analiz i ego pril., 9:3 (1975), 41–51 | DOI | MR | Zbl
[15] A. R. Its, V. B. Matveev, Funkts. analiz i ego pril., 9:1 (1975), 69–70 | DOI | MR | Zbl
[16] P. D. Lax, Comm. Pure Appl. Math., 28:1 (1975), 141–188 | DOI | MR | Zbl
[17] H. P. Mckean, P. van Moerbeke, Invent. Math., 30:3 (1975), 217–274 | DOI | MR | Zbl
[18] E. D. Belokolos, A. I. Bobenko, V. Z. Enol'skii, A. R. Its, V. B. Matveev, Algebro-Geometric Approach to Nonlinear Integrable Equations, Springer Ser. Nonlinear Dyn., Springer, Berlin, 1994 | Zbl
[19] F. Gesztesy, H. Holden, Soliton Equations and Their Algebro-Geometric Solutions, v. I, Cambridge Stud. Adv. Math., 79, $(1+1)$-Dimensional Continuous Models, Cambridge Univ. Press, Cambridge, 2003 | MR | Zbl
[20] F. Gesztesy, H. Holden, Phil. Trans. R Soc. A, 366:1867 (2008), 1025–1054 | DOI | MR | Zbl
[21] Z. J. Qiao, Comm. Math. Phys., 239:1–2 (2003), 309–341 | DOI | MR | Zbl
[22] L. Zampogni, Adv. Nonlinear Stud., 7:3 (2007), 345–380 | DOI | MR | Zbl
[23] R. G. Zhou, J. Math. Phys., 38:5 (1997), 2535–2546 | DOI | MR | Zbl
[24] C. Cao, Y. Wu, X. Geng, J. Math. Phys., 40:8 (1999), 3948–3970 | DOI | MR | Zbl
[25] X. G. Geng, Y. T. Wu, C. W. Cao, J. Phys. A, 32:20 (1999), 3733–3742 | DOI | MR | Zbl
[26] X. G. Geng, C. W. Cao, Nonlinearity, 14:6 (2001), 1433–1452 | DOI | MR | Zbl
[27] X. G. Geng, H. H. Dai, J. Y. Zhu, Stud. Appl. Math., 118:3 (2007), 281–312 | DOI | MR
[28] Y. C. Hon, E. G. Fan, J. Math. Phys., 46:3 (2005), 032701, 21 pp. | DOI | MR | Zbl
[29] Yu. I. Manin, A. O. Radul, Comm. Math. Phys., 98:1 (1985), 65–77 | DOI | MR | Zbl
[30] P. Mathieu, J. Math. Phys., 29:11 (1988), 2499–2506 | DOI | MR | Zbl
[31] W. Oevel, Z. Popowicz, Comm. Math. Phys., 139:3 (1991), 441–460 | DOI | MR | Zbl
[32] P. Mathieu, Phys. Lett. A, 128:3–4 (1988), 169–171 | DOI | MR
[33] Q. P. Liu, Lett. Math. Phys., 35:2 (1995), 115–122, arXiv: hep-th/9409008 | DOI | MR | Zbl
[34] Q. P. Liu, Y. F. Xie, Phys. Lett. A, 325:2 (2004), 139–143, arXiv: nlin/0212002 | DOI | MR | Zbl
[35] Q. P. Liu, M. Mañas, Phys. Lett. B, 436:3–4 (1998), 306–310, arXiv: solv-int/9806005 | DOI | MR
[36] A. S. Carstea, Nonlinearity, 13:5 (2000), 1645–1656 | DOI | MR | Zbl
[37] V. S. Vladimirov, I. V. Volovich, TMF, 59:1 (1984), 3–27 | DOI | MR | Zbl
[38] V. S. Vladimirov, I. V. Volovich, TMF, 60:2 (1984), 169–198 | DOI | MR | Zbl
[39] D. Mumford, Tata Lectures on Theta, II, Progress Math., 43, Jacobian Theta Functions and Differential Equations, Birkhäuser, Boston, MA, 1984 | MR | Zbl
[40] P. P. Kulish, A. M. Zeitlin, Phys. Lett. B, 581:1–2 (2004), 125–132, arXiv: hep-th/0312159 | DOI | MR | Zbl
[41] P. P. Kulish, A. M. Zeitlin, Phys. Lett. B, 597:2 (2004), 229–236, arXiv: hep-th/0407154 | DOI | MR | Zbl