Remark on the~phase shift in the~Kuzmak--Whitham ansatz
Teoretičeskaâ i matematičeskaâ fizika, Tome 166 (2011) no. 3, pp. 350-365

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider one-phase (formal) asymptotic solutions in the Kuzmak–Whitham form for the nonlinear Klein–Gordon equation and for the Korteweg–de Vries equation. In this case, the leading asymptotic expansion term has the form $X(S(x,t)/h+\Phi(x,t),I(x,t),x,t)+O(h)$, where $h\ll1$ is a small parameter and the phase $S(x,t)$ and slowly changing parameters $I(x,t)$ are to be found from the system of “averaged” Whitham equations. We obtain the equations for the phase shift $\Phi(x,t)$ by studying the second-order correction to the leading term. The corresponding procedure for finding the phase shift is then nonuniform with respect to the transition to a linear (and weakly nonlinear) case. Our observation, which essentially follows from papers by Haberman and collaborators, is that if we incorporate the phase shift $\Phi$ into the phase and adjust the parameter $\tilde{I}$ by setting $\widetilde{S}=S+h\Phi+O(h^2)$, $\tilde{I}=I+hI_1+O(h^2)$, then the functions $\widetilde{S}(x,t,h)$ and $\tilde{I}(x,t,h)$ become solutions of the Cauchy problem for the same Whitham system but with modified initial conditions. These functions completely determine the leading asymptotic term, which is $X(\widetilde{S}(x,t,h)/h,\tilde{I}(x,t,h),x,t)+O(h)$.
Keywords: rapidly oscillating one-phase asymptotic solution, nonlinear equation, Whitham method, phase shift.
@article{TMF_2011_166_3_a2,
     author = {S. Yu. Dobrokhotov and D. S. Minenkov},
     title = {Remark on the~phase shift in {the~Kuzmak--Whitham} ansatz},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {350--365},
     publisher = {mathdoc},
     volume = {166},
     number = {3},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2011_166_3_a2/}
}
TY  - JOUR
AU  - S. Yu. Dobrokhotov
AU  - D. S. Minenkov
TI  - Remark on the~phase shift in the~Kuzmak--Whitham ansatz
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2011
SP  - 350
EP  - 365
VL  - 166
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2011_166_3_a2/
LA  - ru
ID  - TMF_2011_166_3_a2
ER  - 
%0 Journal Article
%A S. Yu. Dobrokhotov
%A D. S. Minenkov
%T Remark on the~phase shift in the~Kuzmak--Whitham ansatz
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2011
%P 350-365
%V 166
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2011_166_3_a2/
%G ru
%F TMF_2011_166_3_a2
S. Yu. Dobrokhotov; D. S. Minenkov. Remark on the~phase shift in the~Kuzmak--Whitham ansatz. Teoretičeskaâ i matematičeskaâ fizika, Tome 166 (2011) no. 3, pp. 350-365. http://geodesic.mathdoc.fr/item/TMF_2011_166_3_a2/