Remark on the phase shift in the Kuzmak–Whitham ansatz
Teoretičeskaâ i matematičeskaâ fizika, Tome 166 (2011) no. 3, pp. 350-365 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider one-phase (formal) asymptotic solutions in the Kuzmak–Whitham form for the nonlinear Klein–Gordon equation and for the Korteweg–de Vries equation. In this case, the leading asymptotic expansion term has the form $X(S(x,t)/h+\Phi(x,t),I(x,t),x,t)+O(h)$, where $h\ll1$ is a small parameter and the phase $S(x,t)$ and slowly changing parameters $I(x,t)$ are to be found from the system of “averaged” Whitham equations. We obtain the equations for the phase shift $\Phi(x,t)$ by studying the second-order correction to the leading term. The corresponding procedure for finding the phase shift is then nonuniform with respect to the transition to a linear (and weakly nonlinear) case. Our observation, which essentially follows from papers by Haberman and collaborators, is that if we incorporate the phase shift $\Phi$ into the phase and adjust the parameter $\tilde{I}$ by setting $\widetilde{S}=S+h\Phi+O(h^2)$, $\tilde{I}=I+hI_1+O(h^2)$, then the functions $\widetilde{S}(x,t,h)$ and $\tilde{I}(x,t,h)$ become solutions of the Cauchy problem for the same Whitham system but with modified initial conditions. These functions completely determine the leading asymptotic term, which is $X(\widetilde{S}(x,t,h)/h,\tilde{I}(x,t,h),x,t)+O(h)$.
Keywords: rapidly oscillating one-phase asymptotic solution, nonlinear equation, Whitham method, phase shift.
@article{TMF_2011_166_3_a2,
     author = {S. Yu. Dobrokhotov and D. S. Minenkov},
     title = {Remark on the~phase shift in {the~Kuzmak{\textendash}Whitham} ansatz},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {350--365},
     year = {2011},
     volume = {166},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2011_166_3_a2/}
}
TY  - JOUR
AU  - S. Yu. Dobrokhotov
AU  - D. S. Minenkov
TI  - Remark on the phase shift in the Kuzmak–Whitham ansatz
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2011
SP  - 350
EP  - 365
VL  - 166
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2011_166_3_a2/
LA  - ru
ID  - TMF_2011_166_3_a2
ER  - 
%0 Journal Article
%A S. Yu. Dobrokhotov
%A D. S. Minenkov
%T Remark on the phase shift in the Kuzmak–Whitham ansatz
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2011
%P 350-365
%V 166
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2011_166_3_a2/
%G ru
%F TMF_2011_166_3_a2
S. Yu. Dobrokhotov; D. S. Minenkov. Remark on the phase shift in the Kuzmak–Whitham ansatz. Teoretičeskaâ i matematičeskaâ fizika, Tome 166 (2011) no. 3, pp. 350-365. http://geodesic.mathdoc.fr/item/TMF_2011_166_3_a2/

[1] S. Yu. Dobrokhotov, V. P. Maslov, “Konechnozonnye pochti periodicheskie resheniya v VKB-priblizheniyakh”, Sovremennye problemy matematiki, Itogi nauki i tekhniki, 15, ed. R. V. Gamkrelidze, VINITI, M., 1980, 3–94 | DOI | MR | Zbl

[2] S. Yu. Dobrokhotov, D. S. Minenkov, Regul. Chaotic Dyn., 15:2–3 (2010), 285–299 | DOI | MR | Zbl

[3] R. Haberman, SIAM J. Appl. Math., 51:6 (1991), 1638–1652 | DOI | MR | Zbl

[4] J. C. Luke, Proc. Roy. Soc. A, 292:1430 (1966), 403–412 | DOI | MR | Zbl

[5] G. B. Whitham, Proc. Roy. Soc. A, 283:1393 (1965), 238–261 | DOI | MR | Zbl

[6] G. B. Whitham, J. Fluid Mech., 44:2 (1970), 373–395 | DOI | MR | Zbl

[7] A. M. Ilin, TMF, 118:3 (1999), 383–389 | DOI | MR | Zbl

[8] I. M. Krichever, Funkts. analiz i ego pril., 22:3 (1988), 37–52 | DOI | MR | Zbl

[9] F. J. Bourland, R. Haberman, SIAM J. Appl. Math, 48:4 (1988), 737–748 | DOI | MR | Zbl

[10] S. Yu. Dobrokhotov, I. M. Krichever, Matem. zametki, 49:6 (1991), 42–58 | DOI | MR | Zbl

[11] V. P. Maslov, TMF, 1:3 (1969), 378–383 | DOI | MR

[12] V. I. Arnold, Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1997 | MR | MR | Zbl

[13] V. P. Maslov, UMN, 41:6(252) (1986), 19–35 | DOI | MR

[14] A. Ya. Maltsev, Funkts. analiz i ego pril., 42:2 (2008), 28–43 | DOI | MR | Zbl

[15] A. Nyuell, Solitony v matematike i fizike, Mir, M., 1989 | MR | MR | Zbl

[16] R. Haberman, Stud. Appl. Math., 78:1 (1988), 73–90 | DOI | MR | Zbl

[17] A. R. Its, V. B. Matveev, “Ob odnom klasse reshenii uravnenii Kortevega–de Friza”, Problemy matematicheskoi fiziki, v. 8, LGU, L., 1976, 70–92 | MR

[18] V. V. Matveev, Abelian functions and solitons, Preprint No 373, Inst. Theor. Phys., Univ. Wroclaw, 1976

[19] B. A. Dubrovin, V. B. Matveev, S. P. Novikov, UMN, 31:1(187) (1976), 55–136 | DOI | MR | Zbl

[20] H. Flashka, M. G. Forest, D. W. McLaughlin, Comm. Pure. Appl. Math., 33:6 (1980), 739–784 | DOI | MR | Zbl

[21] N. I. Akhiezer, Elementy teorii ellipticheskikh funktsii, Nauka, M., 1970 | MR | Zbl