New dynamical variables in Einstein's theory of gravity
Teoretičeskaâ i matematičeskaâ fizika, Tome 166 (2011) no. 3, pp. 323-335 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We describe an alternative formalism for Einstein's theory of gravity. The role of dynamical variables is played by a collection of ten vector fields $f_{\mu}^A$, $A=1,\dots,10$. The metric is a composite variable, $g_{\mu\nu}=f_{\mu}^Af_{\nu}^A$. The proposed scheme may lead to further progress in a theory of gravity where Einstein's theory is to play the role of an effective theory, with Newton's constant appearing by introducing an anomalous Green's function.
Keywords: Einstein theory of gravity, vector fields, Hamiltonian formulation.
@article{TMF_2011_166_3_a0,
     author = {L. D. Faddeev},
     title = {New dynamical variables in {Einstein's} theory of gravity},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {323--335},
     year = {2011},
     volume = {166},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2011_166_3_a0/}
}
TY  - JOUR
AU  - L. D. Faddeev
TI  - New dynamical variables in Einstein's theory of gravity
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2011
SP  - 323
EP  - 335
VL  - 166
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2011_166_3_a0/
LA  - ru
ID  - TMF_2011_166_3_a0
ER  - 
%0 Journal Article
%A L. D. Faddeev
%T New dynamical variables in Einstein's theory of gravity
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2011
%P 323-335
%V 166
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2011_166_3_a0/
%G ru
%F TMF_2011_166_3_a0
L. D. Faddeev. New dynamical variables in Einstein's theory of gravity. Teoretičeskaâ i matematičeskaâ fizika, Tome 166 (2011) no. 3, pp. 323-335. http://geodesic.mathdoc.fr/item/TMF_2011_166_3_a0/

[1] A. Einstein, Ann. Phys., 354:7 (1916), 769–822 ; 14:Suppl. 1 (2005), 517–571 | DOI | Zbl | DOI | Zbl

[2] P. A. M. Dirac, Proc. Roy. Soc. A, 246:1246 (1958), 333–343 | DOI | MR | Zbl

[3] L. D. Faddeev, V. N. Popov, UFN, 111 (1973), 427–450 | DOI | MR

[4] S. Weinberg, Phys. Rev. Lett., 19:21 (1967), 1264–1266 | DOI

[5] A. Salam, “Weak and Electromagnetic Interactions”, Elementary Particle Theory, Proc. Nobel Symposium (Lerum, Sweden, 1968), ed. N. Svartholm, Almquist and Wiksell, Stockholm, 1968, 367–377

[6] S. L. Adler, Rev. Modern Phys., 54:3 (1982), 729–766 | DOI | MR

[7] S. Deser, F. A. E. Pirani, D. C. Robinson, Phys. Rev. D, 14:12 (1976), 3301–3303 | DOI

[8] S. A. Paston, V. A. Franke, TMF, 153:2 (2007), 271–288, arXiv: 0711.0576 | DOI | MR | Zbl

[9] L. D. Faddeev, New variables for the Einstein theory of gravitation, arXiv: 0911.0282

[10] L. D. Faddeev, $3+1$ decomposition in the new action for the Einstein theory of gravitation, arXiv: 1003.2311 | MR

[11] L. D. Faddeev, R. Jackiw, Phys. Rev. Lett., 60:17 (1988), 1692–1694 | DOI | MR | Zbl

[12] L. D. Faddeev, UFN, 136:3 (1982), 435–457 | DOI | MR | Zbl

[13] J. S. Schwinger, Phys. Rev., 130:3 (1963), 1253–1258 | DOI | MR | Zbl

[14] R. L. Arnowitt, S. Deser, C. W. Misner, Phys. Rev., 117:6 (1960), 1595–1602 | DOI | MR | Zbl