@article{TMF_2011_166_2_a9,
author = {Zhimin Li},
title = {Branching structure and maximum degree of an~evolving random tree},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {312--319},
year = {2011},
volume = {166},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2011_166_2_a9/}
}
Zhimin Li. Branching structure and maximum degree of an evolving random tree. Teoretičeskaâ i matematičeskaâ fizika, Tome 166 (2011) no. 2, pp. 312-319. http://geodesic.mathdoc.fr/item/TMF_2011_166_2_a9/
[1] R. T. Smythe, H. M. Mahmoud, Theory Probab. Math. Statist., 51 (2001), 1–27 | MR | Zbl
[2] R. Albert, A.-L. Barabási, Science, 286:5439 (1999), 509–512, arXiv: cond-mat/9910332 | DOI | MR | Zbl
[3] B. Bollobás, O. Riodan, J. Spencer, G. Tusnády, Random Strucures Algorithms, 18:3 (2001), 279–290 | DOI | MR | Zbl
[4] M. E. J. Newman, SIAM Rev., 45:2 (2003), 167–256, arXiv: cond-mat/0303516 | DOI | MR | Zbl
[5] T. F. Móri, Studia Sci. Math. Hungar., 39:1–2 (2002), 143–155 | DOI | MR | Zbl
[6] Z. Katona, T. F. Móri, Statist. Probab. Lett., 76:15 (2006), 1587–1593 | DOI | MR | Zbl
[7] D. S. Callaway, M. E. J. Newman, S. H. Strogatz, D. J. Watts, Phys. Rev. Lett., 85:25 (2000), 5468–5471, arXiv: cond-mat/0007300 | DOI
[8] D. J. Watts, Small Worlds: the Dynamics of Networks Between Order and Randomness, Princeton Univ. Press, Princeton, NJ, 2004 | MR | Zbl