Integrable dynamical systems generated by quantum models with an~adiabatic parameter
Teoretičeskaâ i matematičeskaâ fizika, Tome 166 (2011) no. 2, pp. 261-265

Voir la notice de l'article provenant de la source Math-Net.Ru

Several models solvable in terms of special functions of the Heun class are widely used in quantum mechanics. They are all characterized by the presence of a parameter that can be regarded as an adiabatic variable. An antiquantization procedure applied to such a model generates a dynamical model with properties of the Painlevé equations. The mentioned parameter plays the role of time. We consider examples of such models.
Keywords: two-Coulomb-center problem, Stark effect in hydrogen, Painlevé equation, integrable dynamical system.
@article{TMF_2011_166_2_a4,
     author = {A. Myll\"ari and S. Yu. Slavyanov},
     title = {Integrable dynamical systems generated by quantum models with an~adiabatic parameter},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {261--265},
     publisher = {mathdoc},
     volume = {166},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2011_166_2_a4/}
}
TY  - JOUR
AU  - A. Mylläri
AU  - S. Yu. Slavyanov
TI  - Integrable dynamical systems generated by quantum models with an~adiabatic parameter
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2011
SP  - 261
EP  - 265
VL  - 166
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2011_166_2_a4/
LA  - ru
ID  - TMF_2011_166_2_a4
ER  - 
%0 Journal Article
%A A. Mylläri
%A S. Yu. Slavyanov
%T Integrable dynamical systems generated by quantum models with an~adiabatic parameter
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2011
%P 261-265
%V 166
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2011_166_2_a4/
%G ru
%F TMF_2011_166_2_a4
A. Mylläri; S. Yu. Slavyanov. Integrable dynamical systems generated by quantum models with an~adiabatic parameter. Teoretičeskaâ i matematičeskaâ fizika, Tome 166 (2011) no. 2, pp. 261-265. http://geodesic.mathdoc.fr/item/TMF_2011_166_2_a4/