Supergroup approach to the Hubbard model
Teoretičeskaâ i matematičeskaâ fizika, Tome 166 (2011) no. 2, pp. 245-260 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Based on the revealed hidden supergroup structure, we develop a new approach to the Hubbard model. We reveal a relation of even Hubbard operators to the spinor representation of the generators of the rotation group of four-dimensional spaces. We propose a procedure for constructing a matrix representation of translation generators, yielding a curved space on which dynamic superfields are defined. We construct a new deformed nonlinear superalgebra for the regime of spinless Hubbard model fermions in the case of large on-site repulsion and evaluate the effective functional for spinless fermions.
Keywords: Hubbard model, deformed nonlinear superalgebra, effective functional.
@article{TMF_2011_166_2_a3,
     author = {V. M. Zharkov and V. S. Kirchanov},
     title = {Supergroup approach to {the~Hubbard} model},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {245--260},
     year = {2011},
     volume = {166},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2011_166_2_a3/}
}
TY  - JOUR
AU  - V. M. Zharkov
AU  - V. S. Kirchanov
TI  - Supergroup approach to the Hubbard model
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2011
SP  - 245
EP  - 260
VL  - 166
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2011_166_2_a3/
LA  - ru
ID  - TMF_2011_166_2_a3
ER  - 
%0 Journal Article
%A V. M. Zharkov
%A V. S. Kirchanov
%T Supergroup approach to the Hubbard model
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2011
%P 245-260
%V 166
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2011_166_2_a3/
%G ru
%F TMF_2011_166_2_a3
V. M. Zharkov; V. S. Kirchanov. Supergroup approach to the Hubbard model. Teoretičeskaâ i matematičeskaâ fizika, Tome 166 (2011) no. 2, pp. 245-260. http://geodesic.mathdoc.fr/item/TMF_2011_166_2_a3/

[1] J. Hubbard, Proc. Roy. Soc. A, 276:1365 (1963), 238–257 | DOI

[2] Y. Shimizu, K. Miyagawa, K. Kanoda, M. Maesato, G. Saito, Phys. Rev. Lett., 91:10 (2003), 107001, 4 pp., arXiv: cond-mat/0307483 | DOI

[3] V. M. Zharkov, TMF, 60:3 (1984), 404–412 ; 77:1 (1988), 107–117 | DOI | MR | DOI | MR

[4] V. M. Zharkov, TMF, 90:1 (1992), 75–83 | DOI | MR

[5] S. M. Kuzenko, J. Phys. A, 43:44 (2010), 443001, 46 pp., arXiv: 1004.0880 | DOI | MR

[6] Yu. A. Izyumov, M. I. Katsnelson, Yu. N. Skryabin, Magnetizm kollektivizirovannykh elektronov, Fizmatlit, M., 1994

[7] A. K. Tolpygo, “Szhatie algebry Li”, Matematicheskaya entsiklopediya, v. 4, Sov. entsiklopediya, M., 1984, 1125 | MR | Zbl

[8] E. Inönü, E. P. Wigner, Proc. Nat. Acad. Sci. USA, 39:6 (1953), 510–524 | DOI | MR | Zbl

[9] E. J. Saletan, J. Math. Phys., 2:1 (1961), 1–21 | DOI | MR | Zbl

[10] A. Barut, P. Ronchka, Teoriya predstavlenii grupp i ee prilozheniya, v. 1, Mir, M., 1980 | MR | MR | Zbl

[11] Dzh. Eliot, P. Dober, Simmetriya v fizike, v. 1, 2, Mir, M., 1983 | MR | MR | MR | MR

[12] C. Meusburger, Comm. Math. Phys., 273:3 (2007), 705–754, arXiv: gr-qc/0607121 | DOI | MR | Zbl

[13] M. K. Volkov, V. M. Pervushin, Suschestvenno nelineinye kvantovye teorii, dinamicheskie simmetrii i fizika mezonov, Atomizdat, M., 1978

[14] E. Kartan, Geometriya grupp Li i simmetricheskie prostranstva, IL, M., 1949

[15] E. Kartan, Rimanova geometriya v ortogonalnom repere, Izd-vo MGU, M., 1960 | MR | MR | Zbl

[16] D. V. Volkov, EChAYa, 4:1 (1973), 3–41 | MR

[17] A. B. Borisov, V. V. Kiselev, Nelineinye volny, solitony i lokalizovannye struktury v magnetikakh, v. 1, Kvaziodnomernye magnitnye solitony, Izd-vo UrO RAN, IFM, Ekaterinburg, 2009

[18] V. Zharkov, V. Kirchanov, New path integral representation for Hubbard model: I. Supercoherent state, arXiv: 1002.3043

[19] D. B. Uglov, V. E. Korepin, Phys. Lett. A, 190:3–4 (1994), 238–242, arXiv: hep-th/9310158 | DOI | MR | Zbl

[20] S. Bonanos, Graded Exterior Differential Calculus and Mathematica\par http://www.inp.demokritos.gr/<nobr>$\sim$</nobr>sbonano/superEDC/

[21] V. Zharkov, V. Kirchanov, New path integral representation for Hubbard model: II. Spinless case, arXiv: 1006.1511