An~integral relation for tensor polynomials
Teoretičeskaâ i matematičeskaâ fizika, Tome 166 (2011) no. 2, pp. 216-224
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove two lemmas and one theorem that allow integrating the product of an arbitrary number of unit vectors and the Legendre polynomials over a sphere of arbitrary radius. Such integral tensor products appear in solving inhomogeneous Helmholtz equations whose right-hand side is proportional to the product of a nonfixed number of unit vectors.
Keywords:
tensor relation, Gegenbauer theorem, pseudo-Riemannian geometry.
Mots-clés : tensor Legendre polynomial
Mots-clés : tensor Legendre polynomial
@article{TMF_2011_166_2_a1,
author = {P. A. Vshivtseva and V. I. Denisov and I. P. Denisova},
title = {An~integral relation for tensor polynomials},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {216--224},
publisher = {mathdoc},
volume = {166},
number = {2},
year = {2011},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2011_166_2_a1/}
}
TY - JOUR AU - P. A. Vshivtseva AU - V. I. Denisov AU - I. P. Denisova TI - An~integral relation for tensor polynomials JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2011 SP - 216 EP - 224 VL - 166 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2011_166_2_a1/ LA - ru ID - TMF_2011_166_2_a1 ER -
P. A. Vshivtseva; V. I. Denisov; I. P. Denisova. An~integral relation for tensor polynomials. Teoretičeskaâ i matematičeskaâ fizika, Tome 166 (2011) no. 2, pp. 216-224. http://geodesic.mathdoc.fr/item/TMF_2011_166_2_a1/