An~integral relation for tensor polynomials
Teoretičeskaâ i matematičeskaâ fizika, Tome 166 (2011) no. 2, pp. 216-224

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove two lemmas and one theorem that allow integrating the product of an arbitrary number of unit vectors and the Legendre polynomials over a sphere of arbitrary radius. Such integral tensor products appear in solving inhomogeneous Helmholtz equations whose right-hand side is proportional to the product of a nonfixed number of unit vectors.
Keywords: tensor relation, Gegenbauer theorem, pseudo-Riemannian geometry.
Mots-clés : tensor Legendre polynomial
@article{TMF_2011_166_2_a1,
     author = {P. A. Vshivtseva and V. I. Denisov and I. P. Denisova},
     title = {An~integral relation for tensor polynomials},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {216--224},
     publisher = {mathdoc},
     volume = {166},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2011_166_2_a1/}
}
TY  - JOUR
AU  - P. A. Vshivtseva
AU  - V. I. Denisov
AU  - I. P. Denisova
TI  - An~integral relation for tensor polynomials
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2011
SP  - 216
EP  - 224
VL  - 166
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2011_166_2_a1/
LA  - ru
ID  - TMF_2011_166_2_a1
ER  - 
%0 Journal Article
%A P. A. Vshivtseva
%A V. I. Denisov
%A I. P. Denisova
%T An~integral relation for tensor polynomials
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2011
%P 216-224
%V 166
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2011_166_2_a1/
%G ru
%F TMF_2011_166_2_a1
P. A. Vshivtseva; V. I. Denisov; I. P. Denisova. An~integral relation for tensor polynomials. Teoretičeskaâ i matematičeskaâ fizika, Tome 166 (2011) no. 2, pp. 216-224. http://geodesic.mathdoc.fr/item/TMF_2011_166_2_a1/