Topological expansion of the $\beta$-ensemble model and quantum algebraic geometry in the sectorwise approach
Teoretičeskaâ i matematičeskaâ fizika, Tome 166 (2011) no. 2, pp. 163-215 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We construct the solution of the loop equations of the $\beta$-ensemble model in a form analogous to the solution in the case of the Hermitian matrices $\beta=1$. The solution for $\beta=1$ is expressed in terms of the algebraic spectral curve given by $y^2=U(x)$. The spectral curve for arbitrary $\beta$ converts into the Schrödinger equation $\bigl((\hbar\partial)^2-U(x)\bigr)\psi(x)=0$, where $\hbar\propto \bigl(\sqrt\beta-1/\sqrt\beta\,\bigr)/N$. The basic ingredients of the method based on the algebraic solution retain their meaning, but we use an alternative approach to construct a solution of the loop equations in which the resolvents are given separately in each sector. Although this approach turns out to be more involved technically, it allows consistently defining the $\mathcal B$-cycle structure for constructing the quantum algebraic curve (a D-module of the form $y^2-U(x)$, where $[y,x]=\hbar$) and explicitly writing the correlation functions and the corresponding symplectic invariants $\mathcal F_h$ or the terms of the free energy in an $1/N^2$-expansion at arbitrary $\hbar$. The set of “flat”; coordinates includes the potential times $t_k$ and the occupation numbers $\widetilde{\epsilon}_\alpha$. We define and investigate the properties of the $\mathcal A$- and $\mathcal B$-cycles, forms of the first, second, and third kinds, and the Riemann bilinear identities. These identities allow finding the singular part of $\mathcal F_0$, which depends only on $\widetilde{\epsilon}_\alpha$.
Keywords: Schrödinger equation, Bergman kernel, correlation function, Riemann identity, flat coordinates
Mots-clés : Riccati equation.
@article{TMF_2011_166_2_a0,
     author = {L. O. Chekhov and B. Eynard and O. Marchal},
     title = {Topological expansion of the~$\beta$-ensemble model and quantum algebraic geometry in the~sectorwise approach},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {163--215},
     year = {2011},
     volume = {166},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2011_166_2_a0/}
}
TY  - JOUR
AU  - L. O. Chekhov
AU  - B. Eynard
AU  - O. Marchal
TI  - Topological expansion of the $\beta$-ensemble model and quantum algebraic geometry in the sectorwise approach
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2011
SP  - 163
EP  - 215
VL  - 166
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2011_166_2_a0/
LA  - ru
ID  - TMF_2011_166_2_a0
ER  - 
%0 Journal Article
%A L. O. Chekhov
%A B. Eynard
%A O. Marchal
%T Topological expansion of the $\beta$-ensemble model and quantum algebraic geometry in the sectorwise approach
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2011
%P 163-215
%V 166
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2011_166_2_a0/
%G ru
%F TMF_2011_166_2_a0
L. O. Chekhov; B. Eynard; O. Marchal. Topological expansion of the $\beta$-ensemble model and quantum algebraic geometry in the sectorwise approach. Teoretičeskaâ i matematičeskaâ fizika, Tome 166 (2011) no. 2, pp. 163-215. http://geodesic.mathdoc.fr/item/TMF_2011_166_2_a0/

[1] L. O. Chekhov, B. Eynard, O. Marchal, Topological expansion of the Bethe ansatz, and quantum algebraic geometry, arXiv: 0911.1664 | MR

[2] B. Eynard, JHEP, 11 (2004), 031, 35 pp., arXiv: hep-th/0407261 | DOI | MR

[3] B. Eynard, N. Orantin, Comm. Number Theory Phys., 1:2 (2007), 347–452, arXiv: math-ph/0702045 | DOI | MR | Zbl

[4] L. Chekhov, B. Eynard, JHEP, 03 (2006), 014, 18 pp., arXiv: hep-th/0504116 | DOI | MR

[5] L. Chekhov, B. Eynard, N. Orantin, JHEP, 12 (2006), 053, 31 pp., arXiv: math-ph/0603003 | DOI | MR | Zbl

[6] B. Eynard, A. Prats Ferrer, JHEP, 7 (2009), 096, 29 pp., arXiv: 0805.1368 | DOI | MR

[7] M. L. Mehta, Random Matrices, Pure Appl. Math. Ser., 142, Elsevier, Amsterdam, 2004 | MR | Zbl

[8] L. Chekhov, B. Eynard, JHEP, 12 (2006), 026, 29 pp., arXiv: math-ph/0604014 | DOI | MR | Zbl

[9] I. Dumitriu, A. Edelman, J. Math. Phys., 43:11 (2002), 5830–5847, arXiv: math-ph/0206043 | DOI | MR | Zbl

[10] B. Eynard, J. Phys. A, 34:37 (2001), 7591–7605, arXiv: cond-mat/0012046 | DOI | MR | Zbl

[11] L. F. Alday, D. Gaiotto, Y. Tachikawa, Lett. Math. Phys., 91:2 (2010), 167–197, arXiv: 0906.3219 | DOI | MR | Zbl

[12] N. A. Nekrasov, Adv. Theor. Math. Phys., 7:5 (2003), 831–864, arXiv: hep-th/0306211 | DOI | MR | Zbl

[13] A. Mironov, A. Morozov, Phys. Lett. B, 680:2 (2009), 188–194, arXiv: 0908.2190 | DOI | MR

[14] T. Eguchi, K. Maruyoshi, JHEP, 2010, 022, 21 pp., arXiv: 0911.4797 | DOI | Zbl

[15] B. Eynard, O. Marchal, JHEP, 03 (2009), 094, 52 pp., arXiv: 0809.3367 | DOI | MR

[16] I. M. Krichever, Comm. Pure Appl. Math., 47:4 (1994), 437–475, arXiv: hep-th/9205110 | DOI | MR | Zbl

[17] I. M. Gelfand, L. A. Dikii, Funkts. analiz i ego pril., 13:1 (1979), 8–20 | DOI | MR | Zbl

[18] O. Babelon, D. Talalaev, J. Stat. Mech. Theory Exp., 6 (2007), P06013, 16 pp., arXiv: hep-th/0703124 | DOI | MR