Topological expansion of the~$\beta$-ensemble model and quantum algebraic geometry in the~sectorwise approach
Teoretičeskaâ i matematičeskaâ fizika, Tome 166 (2011) no. 2, pp. 163-215
Voir la notice de l'article provenant de la source Math-Net.Ru
We construct the solution of the loop equations of the $\beta$-ensemble model in a form analogous to the solution in the case of the Hermitian matrices $\beta=1$. The solution for $\beta=1$ is expressed in terms of the algebraic spectral curve given by $y^2=U(x)$. The spectral curve for arbitrary $\beta$ converts into the Schrödinger equation $\bigl((\hbar\partial)^2-U(x)\bigr)\psi(x)=0$, where $\hbar\propto \bigl(\sqrt\beta-1/\sqrt\beta\,\bigr)/N$. The basic ingredients of the method based on the algebraic solution retain their meaning, but we use an alternative approach to construct a solution of the loop equations in which the resolvents are given separately in each sector. Although this approach turns out to be more involved technically, it allows consistently defining the $\mathcal B$-cycle structure for constructing the quantum algebraic curve (a D-module of the form $y^2-U(x)$, where $[y,x]=\hbar$) and explicitly writing the correlation functions and the corresponding symplectic invariants $\mathcal F_h$ or the terms of the free energy in an $1/N^2$-expansion at arbitrary $\hbar$. The set of “flat”; coordinates includes the potential times $t_k$ and the occupation numbers $\widetilde{\epsilon}_\alpha$. We define and investigate the properties of the $\mathcal A$- and $\mathcal B$-cycles, forms of the first, second, and third kinds, and the Riemann bilinear identities. These identities allow finding the singular part of $\mathcal F_0$, which depends only on $\widetilde{\epsilon}_\alpha$.
Keywords:
Schrödinger equation, Bergman kernel, correlation function, Riemann identity, flat coordinates
Mots-clés : Riccati equation.
Mots-clés : Riccati equation.
@article{TMF_2011_166_2_a0,
author = {L. O. Chekhov and B. Eynard and O. Marchal},
title = {Topological expansion of the~$\beta$-ensemble model and quantum algebraic geometry in the~sectorwise approach},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {163--215},
publisher = {mathdoc},
volume = {166},
number = {2},
year = {2011},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2011_166_2_a0/}
}
TY - JOUR AU - L. O. Chekhov AU - B. Eynard AU - O. Marchal TI - Topological expansion of the~$\beta$-ensemble model and quantum algebraic geometry in the~sectorwise approach JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2011 SP - 163 EP - 215 VL - 166 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2011_166_2_a0/ LA - ru ID - TMF_2011_166_2_a0 ER -
%0 Journal Article %A L. O. Chekhov %A B. Eynard %A O. Marchal %T Topological expansion of the~$\beta$-ensemble model and quantum algebraic geometry in the~sectorwise approach %J Teoretičeskaâ i matematičeskaâ fizika %D 2011 %P 163-215 %V 166 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_2011_166_2_a0/ %G ru %F TMF_2011_166_2_a0
L. O. Chekhov; B. Eynard; O. Marchal. Topological expansion of the~$\beta$-ensemble model and quantum algebraic geometry in the~sectorwise approach. Teoretičeskaâ i matematičeskaâ fizika, Tome 166 (2011) no. 2, pp. 163-215. http://geodesic.mathdoc.fr/item/TMF_2011_166_2_a0/