The phase diagram of a directed polymer in random media with $p$-spin ferromagnetic interactions
Teoretičeskaâ i matematičeskaâ fizika, Tome 166 (2011) no. 1, pp. 121-141
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a directed polymer model with an additive $p$-spin ($p>2$) ferromagnetic term in the Hamiltonian. We give a rigorous proof for the specific free energy and derive the phase diagram. This model was proposed previously, and a detailed proof was given in the case $p=2$, while the main result was only stated for $p>2$. We give a detailed proof of the main result and show the behavior of the model as $p\to\infty$ by constructing the phase diagram also in this case. These results are important in many applications, for instance, in telecommunication and immunology. Our major finding is that in the phase diagram for $p>2$, a new transition curve (absent for $p=2$) emerges between the paramagnetic region and the so-called mixed region and that the ferromagnetic region diminishes as $p\to\infty$.
Keywords: directed polymer, large deviation, phase diagram.
@article{TMF_2011_166_1_a8,
     author = {J. R. Wedagedera},
     title = {The~phase diagram of a~directed polymer in random media with $p$-spin ferromagnetic interactions},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {121--141},
     year = {2011},
     volume = {166},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2011_166_1_a8/}
}
TY  - JOUR
AU  - J. R. Wedagedera
TI  - The phase diagram of a directed polymer in random media with $p$-spin ferromagnetic interactions
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2011
SP  - 121
EP  - 141
VL  - 166
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2011_166_1_a8/
LA  - ru
ID  - TMF_2011_166_1_a8
ER  - 
%0 Journal Article
%A J. R. Wedagedera
%T The phase diagram of a directed polymer in random media with $p$-spin ferromagnetic interactions
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2011
%P 121-141
%V 166
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2011_166_1_a8/
%G ru
%F TMF_2011_166_1_a8
J. R. Wedagedera. The phase diagram of a directed polymer in random media with $p$-spin ferromagnetic interactions. Teoretičeskaâ i matematičeskaâ fizika, Tome 166 (2011) no. 1, pp. 121-141. http://geodesic.mathdoc.fr/item/TMF_2011_166_1_a8/

[1] É. Brunet, B. Derrida, D. Simon, Phys. Rev. E, 78:6 (2008), 061102, 9 pp., arXiv: 0806.1603 | DOI

[2] J.-P. Bouchaud, M. Potters, Theory of Financial Risk and Derivative Pricing, Cambridge Univ. Press, Cambridge, 2003 | MR | Zbl

[3] J. T. Chayes, L. Chayes, Comm. Math. Phys., 105:2 (1986), 221–238 | DOI | MR

[4] E. W. Montroll, G. H. Weiss, J. Math. Phys., 6:2 (1965), 167–181 | DOI | MR

[5] W. Paul, J. Baschnagel, Stochastic Processes. From Physics to Finance, Springer, Berlin, 1999 | MR | Zbl

[6] D. B. Saakian, J. F. Fontanari, Phys. Rev. E, 80 (2009), 041903, 12 pp., arXiv: 0905.1097 | DOI

[7] S. Kauffman, S. Levin, J. Theoret. Biol., 128:1 (1987), 11–45 | DOI | MR

[8] T. A. Witten, Jr., L. M. Sander, Phys. Rev. Lett., 47:19 (1981), 1400–1403 | DOI | MR

[9] C. Giraud, Comm. Math. Phys., 223:1 (2001), 67–86 | DOI | MR | Zbl

[10] Ya. G. Sinaĭ, Comm. Math. Phys., 148:3 (1992), 601–621 | DOI | MR | Zbl

[11] D. Dunn-Walters, C. Thiede, B. Alpen, J. Spencer, Philos. Trans. R. Soc. Lond. Ser. A, 29:356 (2001), 73–82 | DOI

[12] J. Sun, D. J. Earl, M. W. Deem, Modern Phys. Lett. B, 20:2–3 (2006), 63–95 | DOI | Zbl

[13] J. R. Wedagedera, Directed polymers to model TCR-pMHC interaction, , (2010) http://www.math.ruh/ac.lk/<nobr>$\sim$</nobr>janak/research/2010-2.pdf

[14] B. Derrida, R. B. Griffths, R. G. Higgs, Europhys. Lett., 18:4 (1992), 361–366 | DOI

[15] B. Derrida, P. G. Higgs, J. Phys. A, 27:16 (1994), 5485–5493 | DOI | MR | Zbl

[16] S. Havlin, D. Ben-Avraham, Adv. in Phys., 51:1 (2002), 187–292 | DOI | MR

[17] B. Derrida, M. R. Evans, E. R. Speer, Comm. Math. Phys., 156:2 (1993), 221–244 | DOI | MR | Zbl

[18] É. Brunet, B. Derrida, Phys. Rev. E, 61:6 (2000), 6789–6801, arXiv: cond-mat/0005352 | DOI | MR

[19] B. Derrida, Phys. Rev. B, 24:5 (1981), 2613–2626 | DOI | MR | Zbl

[20] B. Derrida, J. Phys. Lett., 46:9 (1985), 401–407 | DOI

[21] É. Brunet, B. Derrida, D. Simon, Phys. Rev. E, 78:6 (2008), 061102, 9 pp., arXiv: 0806.1603 | DOI

[22] B. Derrida, Phys. Rev. Lett., 45:2 (1980), 79–82 | DOI | MR

[23] J. R. Wedagedera, T. C. Dorlas, J. Statist. Phys., 103:5–6 (2001), 697–716 | DOI | MR | Zbl

[24] E. Buffet, A. Patrick, J. V. Pulé, J. Phys. A, 26:8 (1993), 1823–1834 | DOI | MR | Zbl

[25] J. R. Wedagedera, Mathematical aspects of some mean field spin glass models, Ph.D. Thesis, Univ. of Wales, Swancea, 1998

[26] D. Williams, Probability with Martingales, Cambridge Math. Textbooks, Cambridge Univ. Press, Cambridge, 1991 | MR | Zbl

[27] S. R. S. Varadhan, Large Deviations and Applications, SIAM, Philadelphia, 1984 | MR | Zbl

[28] C. E. Shannon, Bell System Tech. J., 27 (1948), 379–423 ; 623–656 | DOI | MR | Zbl

[29] C. E. Shannon, W. Weaver, A Mathematical Theory of Communication, Univ. of Illinois Press, Urbana, 1963 | MR | Zbl

[30] N. Sourlas, Nature, 339:6227 (1989), 693–695 | DOI

[31] N. Sourlas, “Statistical mechanics and error-correcting codes”, Statistical Mechanics of Neural Networks, Lecture Notes in Phys., 368, ed. L. Garrido, Springer, Berlin, 1990, 317–330 | DOI | MR | Zbl

[32] T. C. Dorlas, J. R. Wedagedera, Phys. Rev. Lett., 83:21 (1999), 4441–4444 | DOI

[33] T. C. Dorlas, J. R. Wedagedera, Internat. J. Modern Phys., 15:1 (2001), 1–15 | DOI | MR | Zbl

[34] P. Gillin, D. Sherrington, H. Nishimori, J. Phys. A, 34:14 (2001), 2949–2964, arXiv: cond-mat/0103292 | DOI | MR | Zbl

[35] D. J. Irvine, M. A. Purbhoo, M. Krogsgaard, M. M. Davis, Nature, 419 (2002), 845–849 | DOI

[36] C. Wülfing, J. D. Rabinowitz, C. Beeson, M. D. Sjaastad, H. M. McConnell, M. M. Davis, J. Exp. Medicine, 185:10 (1997), 1815–1825 | DOI