Evolution of the $N$-particle state in the BCS model
Teoretičeskaâ i matematičeskaâ fizika, Tome 166 (2011) no. 1, pp. 110-120
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We obtain an exact scheme describing the dynamics of the $N$-particle state in the BCS model that is similar to the Gel'fand–Yaglom procedure for finding the transition amplitude of the harmonic oscillator with a time-dependent frequency. We find the many-particle spectrum and the eigenfunctions of the BCS Hamiltonian in the limit as the system volume tends to infinity.
Keywords: BCS model, fixed number of particles, many-particle spectrum.
Mots-clés : Gel'fand–Yaglom formula
@article{TMF_2011_166_1_a7,
     author = {V. V. Losyakov},
     title = {Evolution of the~$N$-particle state in {the~BCS} model},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {110--120},
     year = {2011},
     volume = {166},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2011_166_1_a7/}
}
TY  - JOUR
AU  - V. V. Losyakov
TI  - Evolution of the $N$-particle state in the BCS model
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2011
SP  - 110
EP  - 120
VL  - 166
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2011_166_1_a7/
LA  - ru
ID  - TMF_2011_166_1_a7
ER  - 
%0 Journal Article
%A V. V. Losyakov
%T Evolution of the $N$-particle state in the BCS model
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2011
%P 110-120
%V 166
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2011_166_1_a7/
%G ru
%F TMF_2011_166_1_a7
V. V. Losyakov. Evolution of the $N$-particle state in the BCS model. Teoretičeskaâ i matematičeskaâ fizika, Tome 166 (2011) no. 1, pp. 110-120. http://geodesic.mathdoc.fr/item/TMF_2011_166_1_a7/

[1] J. Bardeen, L. N. Cooper, J. R. Schrieffer, Phys. Rev., 108:5 (1957), 1175–1204 | DOI | MR | Zbl

[2] Zh. Emkh, Algebraicheskie metody v statisticheskoi mekhanike i kvantovoi teorii polya, Mir, M., 1976 | MR | Zbl

[3] C. T. Black, D. C. Ralph, M. Tinkham, Phys. Rev. Lett., 76:4 (1996), 688–691 | DOI

[4] J. von Delft, A. D. Zaikin, D. S. Golubov, W. Tichy, Phys. Rev. Lett., 77:15 (1996), 3189–3192, arXiv: cond-mat/9604072 | DOI

[5] F. Braun, J. von Delft, D. C. Ralph, M. Tinkham, Phys. Rev. Lett., 79:5 (1997), 921–924, arXiv: cond-mat/9704181 | DOI

[6] F. Braun, J. von Delft, Phys. Rev. B, 59:14 (1999), 9527–9544, arXiv: cond-mat/9801170 | DOI

[7] A. Mastellone, G. Falci, R. Fazio, Phys. Rev. Lett., 80:20 (1998), 4542–4545, arXiv: cond-mat/9801179 | DOI

[8] A. B. Migdal, Teoriya konechnykh fermi-sistem i svoistva atomnykh yader, Nauka, M., 1983

[9] R. W. Richardson, J. Math. Phys., 18:9 (1977), 1802–1811 | DOI

[10] I. M. Gel'fand, A. M. Yaglom, J. Math. Phys., 1:1 (1960), 48–69 | DOI | MR | Zbl

[11] N. N. Bogolubov, Physica, 26, suppl. 1 (1960), S1–S16 | DOI

[12] N. N. Bogolyubov (ml.), B. I. Sadovnikov, Nekotorye voprosy statisticheskoi mekhaniki, Vysshaya shkola, M., 1975 | MR

[13] F. A. Berezin, Metod vtorichnogo kvantovaniya, Nauka, M., 1986 | MR | MR | Zbl