Self-similar solutions of the Laplacian growth problem in the half-plane
Teoretičeskaâ i matematičeskaâ fizika, Tome 166 (2011) no. 1, pp. 28-43 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We investigate a version of the Laplacian growth problem with zero surface tension in the upper half-plane. Using the method of time-dependent conformal maps, we find families of self-similar exact solutions that are expressible in terms of the hypergeometric function.
Keywords: Laplacian growth, integrable system
Mots-clés : conformal map, harmonic moment.
@article{TMF_2011_166_1_a1,
     author = {D. V. Vasiliev and A. V. Zabrodin},
     title = {Self-similar solutions of {the~Laplacian} growth problem in the~half-plane},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {28--43},
     year = {2011},
     volume = {166},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2011_166_1_a1/}
}
TY  - JOUR
AU  - D. V. Vasiliev
AU  - A. V. Zabrodin
TI  - Self-similar solutions of the Laplacian growth problem in the half-plane
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2011
SP  - 28
EP  - 43
VL  - 166
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2011_166_1_a1/
LA  - ru
ID  - TMF_2011_166_1_a1
ER  - 
%0 Journal Article
%A D. V. Vasiliev
%A A. V. Zabrodin
%T Self-similar solutions of the Laplacian growth problem in the half-plane
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2011
%P 28-43
%V 166
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2011_166_1_a1/
%G ru
%F TMF_2011_166_1_a1
D. V. Vasiliev; A. V. Zabrodin. Self-similar solutions of the Laplacian growth problem in the half-plane. Teoretičeskaâ i matematičeskaâ fizika, Tome 166 (2011) no. 1, pp. 28-43. http://geodesic.mathdoc.fr/item/TMF_2011_166_1_a1/

[1] A. Zabrodin, J. Phys. A, 42:8 (2009), 085206, 23 pp., arXiv: 0811.4054 | DOI | MR | Zbl

[2] S. D. Howison, European J. Appl. Math., 3:3 (1992), 209–224 | DOI | MR | Zbl

[3] P. J. Davis, The Schwarz function and its applications, The Carus Math. Monogr., 17, The Math. Association of America, Buffalo, N.Y., 1974 | MR | Zbl

[4] H. Thomé, M. Rabaud, V. Hakim, Y. Couder, Phys. Fluids A, 1:2 (1989), 224–240 | DOI | MR

[5] M. Ben Amar, Phys. Rev. A, 43:10 (1991), 5724–5727 | DOI

[6] Y. Tu, Phys. Rev. A, 44:2 (1991), 1203–1210 | DOI

[7] R. Combescot, Phys. Rev. A, 45:2 (1992), 873–884 | DOI

[8] I. Markina, A. Vasil'ev, Sci. Ser. A, 9 (2003), 33–43 ; European J. Appl. Math., 15:6 (2004), 781–789 | MR | Zbl | DOI | MR | Zbl

[9] Ar. Abanov, M. Mineev-Weinstein, A. Zabrodin, Phys. D, 235:1–2 (2007), 62–71, arXiv: nlin/0606068 | DOI | MR | Zbl

[10] A. I. Markushevich, Teoriya analiticheskikh funktsii, v. 2, Dalneishee postroenie teorii, Nauka, M., 1968 | MR | Zbl