Complete set of cut-and-join operators in the Hurwitz–Kontsevich theory
Teoretičeskaâ i matematičeskaâ fizika, Tome 166 (2011) no. 1, pp. 3-27
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We define cut-and-join operators in Hurwitz theory for merging two branch points of an arbitrary type. These operators have two alternative descriptions: (1) the $GL$ characters are their eigenfunctions and the symmetric group characters are their eigenvalues; (2) they can be represented as $W$-type differential operators (in particular, acting on the time variables in the Hurwitz–Kontsevich $\tau$-function). The operators have the simplest form when expressed in terms of the Miwa variables. They form an important commutative associative algebra, a universal Hurwitz algebra, generalizing all group algebra centers of particular symmetric groups used to describe the universal Hurwitz numbers of particular orders. This algebra expresses arbitrary Hurwitz numbers as values of a distinguished linear form on the linear space of Young diagrams evaluated on the product of all diagrams characterizing particular ramification points of the branched covering.
Keywords: matrix model, Hurwitz number, symmetric group character.
@article{TMF_2011_166_1_a0,
     author = {A. D. Mironov and A. Yu. Morozov and S. M. Natanzon},
     title = {Complete set of cut-and-join operators in {the~Hurwitz{\textendash}Kontsevich} theory},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {3--27},
     year = {2011},
     volume = {166},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2011_166_1_a0/}
}
TY  - JOUR
AU  - A. D. Mironov
AU  - A. Yu. Morozov
AU  - S. M. Natanzon
TI  - Complete set of cut-and-join operators in the Hurwitz–Kontsevich theory
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2011
SP  - 3
EP  - 27
VL  - 166
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2011_166_1_a0/
LA  - ru
ID  - TMF_2011_166_1_a0
ER  - 
%0 Journal Article
%A A. D. Mironov
%A A. Yu. Morozov
%A S. M. Natanzon
%T Complete set of cut-and-join operators in the Hurwitz–Kontsevich theory
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2011
%P 3-27
%V 166
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2011_166_1_a0/
%G ru
%F TMF_2011_166_1_a0
A. D. Mironov; A. Yu. Morozov; S. M. Natanzon. Complete set of cut-and-join operators in the Hurwitz–Kontsevich theory. Teoretičeskaâ i matematičeskaâ fizika, Tome 166 (2011) no. 1, pp. 3-27. http://geodesic.mathdoc.fr/item/TMF_2011_166_1_a0/

[1] A. Hurwitz, Math. Ann., 39:1 (1891), 1–60 ; 55 (1902), 53–66 | DOI | MR | Zbl | DOI | MR | Zbl

[2] G. Frobenius, Berl. Ber., 1896, 985–1021 | Zbl

[3] R. Dijkgraaf, “Mirror symmetry and elliptic curves”, The Moduli Spaces of Curves, Progr. Math., 129, eds. D. Abramovich, A. Bertram, L. Katzarkov, R. Pandharipande, M. Thaddeus, Birkhäuser, Boston, MA, 1995, 149–163 | MR | Zbl

[4] R. Vakil, Enumerative geometry of curves via degeneration methods, Ph.D. thesis, Harvard University, Cambridge, MA, 1997

[5] I. P. Goulden, D. M. Jackson, Proc. Amer. Math. Soc., 125:1 (1997), 51–60, arXiv: math/9903094 | DOI | MR | Zbl

[6] D. Zvonkin, S. K. Lando, Funkts. analiz i ego pril., 33:3 (1999), 21–34 ; D. Zvonkine, S. K. Lando, Counting ramified coverings and intersection theory on spaces of rational functions I (Cohomology of Hurwitz spaces), arXiv: math.AG/0303218 | DOI | MR | Zbl | MR

[7] S. M. Natanzon, V. Turaev, Topology, 38:4 (1999), 889–914 | DOI | MR | Zbl

[8] I. P. Goulden, D. M. Jackson, A. Vainshtein, Ann. Comb., 4:1 (2000), 27–46, arXiv: math/9902125 | DOI | MR | Zbl

[9] A. Okounkov, Math. Res. Lett., 7:4 (2000), 447–453, arXiv: math/0004128v1 | DOI | MR | Zbl

[10] A. Givental, Mosc. Math. J., 1:4 (2001), 551–568, arXiv: math/0108100 | MR | Zbl

[11] T. Ekedahl, S. Lando, M. Shapiro, A. Vainshtein, Invent. Math., 146:2 (2001), 297–327, arXiv: math/0004096 | DOI | MR | Zbl

[12] S. K. Lando, UMN, 57:3(345) (2002), 29–98 | DOI | MR | Zbl

[13] A. V. Alexeevski, S. M. Natanzon, Selecta Math., 12:3–4 (2006), 307–377, arXiv: math.GT/0202164 | DOI | MR | Zbl

[14] A. V. Alekseevskii, S. M. Natanzon, UMN, 61:4(370) (2006), 185–186 ; S. M. Natanzon, Disk single Hurwitz numbers, arXiv: ; A. Alexeevski, S. Natanzon, “Hurwitz numbers for regular coverings of surfaces by seamed surfaces and Cardy–Frobenius algebras of finite groups”, Geometry, Topology, and Mathematical Physics, Amer. Math. Soc. Transl. Ser. 2, 224, eds. V. M. Buchstaber, I. M. Krichever, AMS, Providence, RI, 2008, 1–25 ; А. В. Алексеевский, С. М. Натанзон, Изв. РАН. Сер. матем., 72:4 (2008), 3–24 0804.0242 | DOI | MR | Zbl | MR | MR | Zbl | DOI | MR | Zbl

[15] J. Zhou, Hodge integrals, Hurwitz numbers and symmetric groups, arXiv: math.AG/0308024

[16] A. Okounkov, R. Pandharipande, Ann. Math., 163:2 (2006), 517–560, arXiv: math.AG/0204305 | DOI | MR | Zbl

[17] T. Graber, R. Vakil, Compos. Math., 135:1 (2003), 25–36, arXiv: math/0003028 | DOI | MR | Zbl

[18] M. E. Kazaryan, S. K. Lando, Izv. RAN. Ser. matem., 68:5 (2004), 91–122, arXiv: ; M. E. Kazarian, S. K. Lando, J. Amer. Math. Soc., 20:4 (2007), 1079–1089, arXiv: math.AG/0410388math/0601760 | DOI | MR | Zbl | DOI | MR | Zbl

[19] M. Kazarian, Adv. Math., 221:1 (2009), 1–21, arXiv: 0809.3263 | DOI | MR | Zbl

[20] S. Lando, “Combinatorial Facets of Hurwitz numbers”, Applications of Group Theory to Combinatorics, eds. J. Koolen, J. H. Kwak, M.-Y. Xu, CRC Press, Boca Raton, FL, 2008, 109–131 | DOI | MR | Zbl

[21] V. Bouchard, M. Mariño, “Hurwitz numbers, matrix models and enumerative geometry”, From Hodge Theory to Integrability and TQFT: $tt^*$-geometry, Proc. Sympos. Pure Math., 78, eds. R. Y. Donagi, K. Wendland, AMS, Providence, RI, 2008, 263–283, arXiv: 0709.1458 | DOI | MR | Zbl

[22] A. Mironov, A. Morozov, JHEP, 02 (2009), 024, 52 pp., arXiv: 0807.2843 | DOI | MR

[23] A. Mironov, A. Morozov, S. Natanzon, Integrability and $\mathcal N$-point Hurwitz numbers (to appear)

[24] A. Morozov, Sh. Shakirov, JHEP, 04 (2009), 064, 33 pp., arXiv: 0902.2627 | DOI | MR

[25] D. E. Littlewood, The Theory of Group Characters and Matrix Representations of Groups, Clarendon Press, Oxford, 1950 ; М. Хамермеш, Теория групп и ее применение к физическим проблемам, Мир, М., 1966 ; И. Макдональд, Симметрические функции и многочлены Холла, Мир, М., 1984 ; W. Fulton, Young Tableaux. With Applications to Representation Theory and Geometry, London Math. Soc. Stud. Texts, 35, Cambridge Univ. Press, Cambridge, 1997 | MR | Zbl | MR | Zbl | MR | MR | Zbl | MR | Zbl

[26] N. Nekrasov, A. Okounkov, “Seiberg–Witten theory and random partitions”, The Unity of Mathematics, Progr. Math., 244, eds. P. Etingof, V. Retakh, I. M. Singer, Birkhäuser, Boston, MA, 2006, 525–596, arXiv: ; A. Marshakov, N. Nekrasov, JHEP, 1 (2007), 104, 39 pp., arXiv: ; B. Eynard, J. Stat. Mech., 7 (2008), P07023, 34 pp., arXiv: ; A. Klemm, P. Sułkowski, Nucl. Phys. B, 819:3 (2009), 400–430, arXiv: hep-th/0306238hep-th/06120190804.03810810.4944 | DOI | MR | Zbl | DOI | MR | DOI | MR | DOI | MR

[27] S. Kharchev, A. Marshakov, A. Mironov, A. Morozov, Internat. J. Modern Phys. A, 10:14 (1995), 2015–2051, arXiv: hep-th/9312210 | DOI | MR | Zbl

[28] S. Kharchev, A. Marshakov, A. Mironov, A. Morozov, Modern Phys. Lett. A, 8:11 (1993), 1047–1061, arXiv: hep-th/9208046 | DOI | MR | Zbl

[29] M. L. Kontsevich, Funkts. analiz i ego pril., 25:2 (1991), 50–57 ; M. L. Kontsevich, Comm. Math. Phys., 147:1 (1992), 1–23 ; S. Kharchev, A. Marshakov, A. Mironov, A. Morozov, A. Zabrodin, Phys. Lett. B, 275:3–4 (1992), 311–314, arXiv: ; S. Kharchev, A. Marshakov, A. Mironov, A. Morozov, A. Zabrodin, Nucl. Phys. B, 380 (1992), 181–240, arXiv: ; A. Marshakov, A. Mironov, A. Morozov, Phys. Lett. B, 274:3–4 (1992), 280–288, arXiv: ; S. Kharchev, A. Marshakov, A. Mironov, A. Morozov, Nucl. Phys. B, 397:1–2 (1993), 339–378, arXiv: ; P. Di Francesco, C. Itzykson, J. -B. Zuber, Comm. Math. Phys., 151:1 (1993), 193–219, arXiv: hep-th/9111037hep-th/9201013hep-th/9201011hep-th/9203043hep-th/9206090 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | DOI | MR | DOI | MR | DOI | MR | DOI | MR | Zbl

[30] A. Yu. Morozov, UFN, 164:1 (1994), 3–62, arXiv: ; A. Yu. Morozov, Matrix models as integrable systems, arXiv: ; “Challenges of matrix models”, String Theory: from Gauge Interactions to Cosmology, NATO Sci. Ser. II Math. Phys. Chem., 208, eds. L. Baulieu, J. de Boer, B. Pioline, E. Rabinovici, Springer, Dordrecht, 2006, 129–162, arXiv: ; A. Mironov, Internat. J. Modern. Phys. A, 9:25 (1994), 4355–4405, arXiv: ; А. Д. Миронов, ЭЧАЯ, 33:5 (2002), 1051–1145 hep-th/9303139hep-th/9502091hep-th/0502010hep-th/9312212 | DOI | MR | DOI | MR | Zbl | DOI | MR | Zbl

[31] A. Gerasimov, A. Marshakov, A. Mironov, A. Morozov, A. Orlov, Nucl. Phys. B, 357:2–3 (1991), 565–618 | DOI | MR

[32] S. Kharchev, A. Marshakov, A. Mironov, A. Morozov, S. Pakuliak, Nucl. Phys. B, 404:3 (1993), 717–750, arXiv: hep-th/9208044 | DOI | MR | Zbl

[33] A. Mironov, A. Morozov, Phys. Lett. B, 252:1 (1990), 47–52 ; F. David, Modern Phys. Lett. A, 5:13 (1990), 1019–1029 ; J. Ambjørn, Yu. M. Makeenko, Modern Phys. Lett. A, 5:22 (1990), 1753–1763 ; H. Itoyama, Y. Matsuo, Phys. Lett. B, 255:2 (1991), 202–208 ; Yu. Makeenko, A. Marshakov, A. Mironov, A. Morozov, Nucl. Phys. B, 356:3 (1991), 574–628 | DOI | MR | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | DOI | MR

[34] A. Alexandrov, A. Mironov, A. Morozov, Internat. J. Modern Phys. A, 19:24 (2004), 4127–4163, arXiv: ; А. С. Александров, А. Д. Миронов, А. Ю. Морозов, ТМФ, 142:3 (2005), 419–488 ; A. Alexandrov, A. Mironov, A. Morozov, Internat. J. Modern Phys. A, 21:12 (2006), 2481–2517, arXiv: ; Fortschr. Phys., 53:5–6 (2005), 512–521, arXiv: ; B. Eynard, JHEP, 11 (2004), 031, 35 pp., arXiv: ; B. Eynard, N. Orantin, Commun. Number Theory Phys., 1:2 (2007), 347–452, arXiv: ; N. Orantin, From matrix models' topological expansion to topological string theories: counting surfaces with algebraic geometry, arXiv: ; A. Alexandrov, A. Mironov, A. Morozov, P. Putrov, Internat. J. Modern Phys. A, 24:27 (2009), 4939–4998, arXiv: hep-th/0310113hep-th/0412099hep-th/0412205hep-th/0407261math-ph/07020450709.29920811.2825 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | DOI | MR | DOI | MR | Zbl

[35] A. S. Aleksandrov, A. D. Mironov, A. Yu. Morozov, TMF, 150:2 (2007), 179–192, arXiv: ; A. Alexandrov, A. Mironov, A. Morozov, Phys. D, 235:1–2 (2007), 126–167, arXiv: ; N. Orantin, Symplectic invariants, Virasoro constraints and Givental decomposition, arXiv: hep-th/0605171hep-th/06082280808.0635 | DOI | MR | Zbl | DOI | MR | Zbl

[36] A. B. Zamolodchikov, TMF, 65:3 (1985), 347–359 ; V. A. Fateev, A. B. Zamolodchikov, Nucl. Phys. B, 280:4 (1987), 644–660 ; A. Gerasimov, A. Marshakov, A. Morozov, Phys. Lett. B, 236:3 (1990), 269–272 ; Nucl. Phys. B, 328:3 (1989), 664–676 ; A. Marshakov, A. Morozov, Nucl. Phys. B, 339:1 (1990), 79–94 ; A. Morozov, Nucl. Phys. B, 357:2–3 (1991), 619–631 | DOI | MR | DOI | MR | DOI | MR | DOI | MR | DOI | MR | DOI | MR

[37] M. Sato, “Soliton equations as dynamical systems on an infinite dimensional Grassmann manifolds”, Random Systems and Dynamical Systems, RIMS Kokyuroku, 439, ed. H. Totoki, Kyoto Univ., Kyoto, 1981, 30–46 | MR | Zbl

[38] G. Segal, G. Wilson, Publ. Math. Publ. IHES, 61:1 (1985), 5–65 ; D. Friedan, S. Shenker, Phys. Lett. B, 175:3 (1986), 287–296 ; Nucl. Phys. B, 281:3–4 (1987), 509–545 ; N. Ishibashi, Y. Matsuo, H. Ooguri, Modern Phys. Lett. A, 2:2 (1987), 119–132 ; L. Alvarez-Gaumé, C. Gomez, C. Reina, Phys. Lett. B, 190:1–2 (1987), 55–62 ; A. Morozov, Phys. Lett. B, 196:3 (1987), 325–328 ; A. S. Schwarz, Nucl. Phys. B, 317:2 (1989), 323–343 | DOI | MR | Zbl | DOI | MR | DOI | MR | DOI | MR | DOI | MR | DOI | MR | DOI | MR

[39] M. Jimbo, T. Miwa, Publ. RIMS Kyoto Univ., 19:3 (1983), 943–1001 | DOI | MR | Zbl

[40] K. Ueno, K. Takasaki, “Toda lattice hierarchy”, Group Representations and Systems of Differential Equations, Adv. Stud. Pure Math., 4, ed. K. Okamoto, North-Holland, Amsterdam, 1984, 1–95 | MR | Zbl

[41] S. Helgason, Differential Geometry and Symmetric Spaces, Pure Appl. Math., 12, Academic Press, New York, London, 1962 ; Д. П. Желобенко, Компактные группы Ли и их представления, Наука, М., 1970 | MR | Zbl | MR | MR | Zbl

[42] A. Alexandrov, A. Mironov, A. Morozov, “Cut-and-join operators, matrix models and characters” (to appear)

[43] A. Grothendieck, “Sketch of a programme. (Esquisse d'un programme)”, Geometric Galois Actions, v. 1, London Math. Soc. Lect. Note Ser., 242, eds. L. Schneps, P. Lochak, Cambridge Univ. Press, Cambridge, 1997, 5–48 ; English translation: 243–283 ; Г. В. Белый, “О расширениях Галуа максимального кругового поля”, Изв. АН СССР. Сер. матем., 43:2 (1979), 267–276 ; G. B. Shabat, V. A. Voevodsky, “Drawing curves over number fields”, The Grothendieck Festschrift, v. III, Progr. Math., 88, eds. P. Cartier, L. Illusie, N. M. Katz, G. Laumon, Y. Manin, K. A. Ribet, Birkhäuser, Boston, MA, 1990, 199–227 ; A. Levin, A. Morozov, Phys. Lett. B, 243:3 (1990), 207–214 ; S. K. Lando, A. K. Zvonkine, Graphs on Surfaces and Their Applications, Encyclopaedia Math. Sci., 141, Springer, Berlin, 2004 ; N. M. Adrianov, N. Ya. Amburg, V. A. Dremov, Yu. A. Levitskaya, E. M. Kreines, Yu. Yu. Kochetkov, V. F. Nasretdinova, G. B. Shabat, Catalog of dessins d'enfants with $\le4$ edges, arXiv: 0710.2658 | MR | Zbl | DOI | MR | Zbl | MR | Zbl | DOI | MR | DOI | MR | Zbl

[44] A. Mironov, A. Morozov, S. Natanzon, Universal algebras of Hurwitz numbers, arXiv: 0909.1164

[45] M. Atiyah, Publ. Math. IHES, 68 (1988), 175–186 | DOI | MR | Zbl

[46] R. Dijkgraaf, E. Witten, Comm. Math. Phys., 129:2 (1990), 393–429 | DOI | MR | Zbl

[47] A. Yu. Morozov, UFN, 35:8 (1992), 671–714 ; А. Д. Миронов, А. Ю. Морозов, Л. Винэ, ТМФ, 100:1 (1994), 119–131, arXiv: ; A. Gerasimov, S. Khoroshkin, D. Lebedev, A. Mironov, A. Morozov, Internat. J. Modern Phys. A, 10:18 (1995), 2589–2614, arXiv: ; S. Kharchev, A. Mironov, A. Morozov, ТМФ, 104:1 (1995), 129–143, arXiv: ; A. Mironov, “Quantum deformations of $\tau$-functions, bilinear identities and representation theory”, Symmetries and Integrability of Difference Equations, CRM Proc. Lecture Notes, 9, eds. D. Levi, L. Vinet, P. Winternitz, AMS, Providence, RI, 1996, 219–237, arXiv: ; А. Д. Миронов, ТМФ, 114:2 (1998), 163–232, arXiv: hep-th/9312213hep-th/9405011q-alg/9501013hep-th/9409190q-alg/9711006 | DOI | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl