Calculations in conformal theory needed for verifying the Alday–Gaiotto–Tachikawa hypothesis
Teoretičeskaâ i matematičeskaâ fizika, Tome 165 (2010) no. 3, pp. 503-542 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Explicitly verifying the Alday–Gaiotto–Tachikawa (AGT) relation between the conformal blocks controlled by the $W_N$ symmetry and $U(N)$ Nekrasov functions requires knowing the Shapovalov matrix and various triple correlators for $W$-algebra descendants. We collect the simplest expressions of this type for $N=3$ and for the two lowest descendant levels together with the detailed derivations, which can now be computerized and used in more general studies of conformal blocks and AGT relations at higher levels.
Keywords: two-dimensional conformal theory, supersymmetric gauge theory.
@article{TMF_2010_165_3_a6,
     author = {A. D. Mironov and S. A. Mironov and A. Yu. Morozov and A. A. Morozov},
     title = {Calculations in conformal theory needed for verifying {the~Alday{\textendash}Gaiotto{\textendash}Tachikawa~hypothesis}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {503--542},
     year = {2010},
     volume = {165},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2010_165_3_a6/}
}
TY  - JOUR
AU  - A. D. Mironov
AU  - S. A. Mironov
AU  - A. Yu. Morozov
AU  - A. A. Morozov
TI  - Calculations in conformal theory needed for verifying the Alday–Gaiotto–Tachikawa hypothesis
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2010
SP  - 503
EP  - 542
VL  - 165
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2010_165_3_a6/
LA  - ru
ID  - TMF_2010_165_3_a6
ER  - 
%0 Journal Article
%A A. D. Mironov
%A S. A. Mironov
%A A. Yu. Morozov
%A A. A. Morozov
%T Calculations in conformal theory needed for verifying the Alday–Gaiotto–Tachikawa hypothesis
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2010
%P 503-542
%V 165
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2010_165_3_a6/
%G ru
%F TMF_2010_165_3_a6
A. D. Mironov; S. A. Mironov; A. Yu. Morozov; A. A. Morozov. Calculations in conformal theory needed for verifying the Alday–Gaiotto–Tachikawa hypothesis. Teoretičeskaâ i matematičeskaâ fizika, Tome 165 (2010) no. 3, pp. 503-542. http://geodesic.mathdoc.fr/item/TMF_2010_165_3_a6/

[1] A. M. Polyakov, Pisma v ZhETF, 12:11 (1970), 538–541 ; ЖЭТФ, 66 (1974), 23–42 | MR

[2] A. A. Belavin, A. M. Polyakov, A. B. Zamolodchikov, Nucl. Phys. B, 241:2 (1984), 333–380 | DOI | MR | Zbl

[3] Al. B. Zamolodchikov, Comm. Math. Phys., 96:3 (1984), 419–422 | DOI | MR

[4] Al. B. Zamolodchikov, TMF, 73:1 (1987), 103–110 | DOI | MR

[5] VI. S. Dotsenko, V. A. Fateev, Nucl. Phys. B, 240:3 (1984), 312–348 | DOI | MR

[6] B. L. Feigin, D. B. Fuks, Funkts. analiz i ego pril., 16:2 (1982), 47–63 | DOI | MR | Zbl

[7] A. B. Zamolodchikov, TMF, 65:3 (1985), 347–359 | DOI | MR

[8] V. A. Fateev, A. B. Zamolodchikov, Nucl. Phys. B, 280 (1987), 644–660 | DOI | MR

[9] V. A. Fateev, S. L. Lukyanov, Internat. J. Modern Phys. A, 3:2 (1988), 507–520 | DOI | MR

[10] H. Sonoda, Nucl. Phys. B, 311:2 (1988), 401–416 | DOI | MR

[11] G. Moore, N. Seiberg, Comm. Math. Phys., 123:2 (1989), 177–254 | DOI | MR | Zbl

[12] A. Gerasimov, A. Marshakov, A. Morozov, M. Olshanetsky, S. Shatashvili, Internat. J. Modern Phys. A, 5:13 (1990), 2495–2589 ; A. Gerasimov, A. Marshakov, A. Morozov, Nucl. Phys. B, 328:3 (1989), 664–676 | DOI | MR | DOI | MR

[13] A. B. Zamolodchikov, Al. B. Zamolodchikov, Konformnaya teoriya polya i kriticheskie yavleniya v dvumernykh sistemakh, MTsNMO, M., 2009 | MR

[14] P. Di Francesco, P. Mathieu, D. Sénéchal, Conformal Field Theory, Springer, New York, 1997 | MR | Zbl

[15] L. F. Alday, D. Gaiotto, Y. Tachikawa, Lett. Math. Phys., 91:2 (2010), 167–197, arXiv: 0906.3219 | DOI | MR | Zbl

[16] N. Wyllard, JHEP, 11 (2009), 002, 22 pp., arXiv: 0907.2189 | DOI | MR

[17] N. A. Nekrasov, Adv. Theor. Math. Phys., 7:5 (2003), 831–864 ; N. Nekrasov, A. Okounkov, “Seiberg–Witten theory and random partitions”, The Unity of Mathematics, Progr. Math., 244, eds. P. Etingof, V. Retakh, I. M. Singer, Birkhäuser, Boston, MA, 2006, 525–596, arXiv: hep-th/0306238 | DOI | MR | Zbl | DOI | MR | Zbl

[18] A. Mironov, A. Morozov, JHEP, 02 (2009), 024, 52 pp., arXiv: ; A. Mironov, A. Morozov, S. Natanzon, Complete set of cut-and-join operators in Hurwitz–Kontsevich theory, arXiv: 0807.28430904.4227 | DOI | MR | MR

[19] A. V. Marshakov, A. D. Mironov, A. Yu. Morozov, TMF, 164:1 (2010), 3–27, arXiv: 0907.3946 | DOI | Zbl

[20] D. Gaiotto, Asymptotically free $N=2$ theories and irregular conformal blocks, arXiv: 0908.0307

[21] A. Mironov, A. Morozov, Phys. Lett. B, 680:2 (2009), 188–194, arXiv: ; Nucl. Phys. B, 825:1–2 (2010), 1–37, arXiv: 0908.21900908.2569 | DOI | MR | DOI | MR | Zbl

[22] M. B. Green, J. H. Schwarz, E. Witten, Superstring theory, v. 1, Cambridge Monogr. Math. Phys., Introduction, Cambridge Univ. Press, Cambridge, 1987 ; v. 2: Loop Amplitudes, Anomalies and Phenomenology ; F. Gliozzi, J. Scherk, D. Olive, Nucl. Phys. B, 122:2 (1977), 253–290 ; A. A. Belavin, V. G. Knizhnik, Phys. Lett. B, 168:3 (1986), 201–206 ; A. Morozov, Phys. Lett. B, 184:2–3 (1987), 171–176 ; 177–183 | MR | Zbl | MR | DOI | DOI | MR | Zbl | DOI | MR | DOI | MR

[23] A. Morozov, JHEP, 05 (2008), 086, 27 pp. ; arXiv: 0804.3167 | DOI | MR