Period integrals, quantum numbers, and confinement in SUSY QCD
Teoretičeskaâ i matematičeskaâ fizika, Tome 165 (2010) no. 3, pp. 488-502
Voir la notice de l'article provenant de la source Math-Net.Ru
We compute the period integrals on degenerate Seiberg–Witten curves for supersymmetric QCD explicitly and also show how these periods determine the changes in the quantum numbers of the states when passing from the weak- to strong-coupling domains in the mass moduli space of the theory. We discuss the confinement of monopoles at a strong coupling and demonstrate that the ambiguities in choosing the path in the moduli space do not affect the physical conclusions on confinement of monopoles in the phase with condensed light dyons.
Keywords:
supersymmetric gauge theory, Riemann surface, integrable system.
Mots-clés : confinement
Mots-clés : confinement
@article{TMF_2010_165_3_a5,
author = {A. V. Marshakov},
title = {Period integrals, quantum numbers, and confinement in {SUSY} {QCD}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {488--502},
publisher = {mathdoc},
volume = {165},
number = {3},
year = {2010},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2010_165_3_a5/}
}
A. V. Marshakov. Period integrals, quantum numbers, and confinement in SUSY QCD. Teoretičeskaâ i matematičeskaâ fizika, Tome 165 (2010) no. 3, pp. 488-502. http://geodesic.mathdoc.fr/item/TMF_2010_165_3_a5/