Moving poles of meromorphic linear systems on $\mathbb P^1(\mathbb C)$ in the complex plane
Teoretičeskaâ i matematičeskaâ fizika, Tome 165 (2010) no. 3, pp. 472-487 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $E^0$ be a holomorphic vector bundle over $\mathbb P^1(\mathbb C)$ and $\nabla^0$ be a meromorphic connection of $E^0$. We introduce the notion of an integrable connection that describes the movement of the poles of $\nabla^0$ in the complex plane with integrability preserved. We show the that such a deformation exists under sufficiently weak conditions on the deformation space. We also show that if the vector bundle $E^0$ is trivial, then the solutions of the corresponding nonlinear equations extend meromorphically to the deformation space.
Keywords: integrable connection, deformation space, integrable deformation, logarithmic pole.
@article{TMF_2010_165_3_a4,
     author = {G. F. Helminck and V. A. Poberezhnyi},
     title = {Moving poles of meromorphic linear systems on $\mathbb P^1(\mathbb C)$ in the~complex plane},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {472--487},
     year = {2010},
     volume = {165},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2010_165_3_a4/}
}
TY  - JOUR
AU  - G. F. Helminck
AU  - V. A. Poberezhnyi
TI  - Moving poles of meromorphic linear systems on $\mathbb P^1(\mathbb C)$ in the complex plane
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2010
SP  - 472
EP  - 487
VL  - 165
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2010_165_3_a4/
LA  - ru
ID  - TMF_2010_165_3_a4
ER  - 
%0 Journal Article
%A G. F. Helminck
%A V. A. Poberezhnyi
%T Moving poles of meromorphic linear systems on $\mathbb P^1(\mathbb C)$ in the complex plane
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2010
%P 472-487
%V 165
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2010_165_3_a4/
%G ru
%F TMF_2010_165_3_a4
G. F. Helminck; V. A. Poberezhnyi. Moving poles of meromorphic linear systems on $\mathbb P^1(\mathbb C)$ in the complex plane. Teoretičeskaâ i matematičeskaâ fizika, Tome 165 (2010) no. 3, pp. 472-487. http://geodesic.mathdoc.fr/item/TMF_2010_165_3_a4/

[1] M. Jimbo, T. Miwa, K. Ueno, Phys. D, 2:2 (1981), 306–352 | DOI | MR | Zbl

[2] B. Malgrange, “Sur les déformations isomonodromiques. I. Singularités régulières”, Mathématique et physique, Progr. Math., 37, eds. L. B. de Monvel, A. Douady and J.-L. Verdier, Birkhäuser Boston, Boston, MA, 1983, 401–426 | MR | Zbl

[3] F. Uorner, Osnovy teorii gladkikh mnogoobrazii i grupp Li, Mir, M., 1987 | MR | MR | Zbl

[4] S. Kobayashi, Differential Geometry of Complex Vector Bundles, Publ. Math. Soc. Japan, 15, Princeton Univ. Press, Princeton, NJ; Iwanami Shoten, Tokyo, 1987 | MR | Zbl

[5] R. Ganning, Kh. Rossi, Analiticheskie funktsii mnogikh kompleksnykh peremennykh, Mir, M., 1969 | MR | MR | Zbl

[6] E. Fadell, L. Neuwirth, Math. Scand., 10 (1962), 111–118 | DOI | MR | Zbl

[7] K. Stein, Arch. Math., 7:5 (1956), 354–361 | DOI | MR | Zbl

[8] H. Grauert, Publ. Math. IHES, 5 (1960), 233–292 | DOI | MR | Zbl

[9] M. F. Atiyah, $K$-theory, W. A. Benjamin, Inc., New York, Amsterdam, 1967 | MR | Zbl

[10] M. Schechter, Principles of Functional Analysis, Academic Press, New York, London, 1973 | MR | Zbl

[11] J. W. Calkin, Ann. Math., 42:4 (1941), 839–873 | DOI | MR | Zbl

[12] A. Grothendieck, Bull. Soc. Math. France, 84 (1956), 319–384 | DOI | MR | Zbl

[13] K. F. Clancey, I. Gohberg, Factorization of Matrix Functions and Singular Integral Operators, Operator Theory: Advances and Applications, 3, Birkhäuser, Basel–Boston, MA, 1981 | MR | Zbl