Moving poles of meromorphic linear systems on $\mathbb P^1(\mathbb C)$ in the~complex plane
Teoretičeskaâ i matematičeskaâ fizika, Tome 165 (2010) no. 3, pp. 472-487

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $E^0$ be a holomorphic vector bundle over $\mathbb P^1(\mathbb C)$ and $\nabla^0$ be a meromorphic connection of $E^0$. We introduce the notion of an integrable connection that describes the movement of the poles of $\nabla^0$ in the complex plane with integrability preserved. We show the that such a deformation exists under sufficiently weak conditions on the deformation space. We also show that if the vector bundle $E^0$ is trivial, then the solutions of the corresponding nonlinear equations extend meromorphically to the deformation space.
Keywords: integrable connection, deformation space, integrable deformation, logarithmic pole.
@article{TMF_2010_165_3_a4,
     author = {G. F. Helminck and V. A. Poberezhnyi},
     title = {Moving poles of meromorphic linear systems on $\mathbb P^1(\mathbb C)$ in the~complex plane},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {472--487},
     publisher = {mathdoc},
     volume = {165},
     number = {3},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2010_165_3_a4/}
}
TY  - JOUR
AU  - G. F. Helminck
AU  - V. A. Poberezhnyi
TI  - Moving poles of meromorphic linear systems on $\mathbb P^1(\mathbb C)$ in the~complex plane
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2010
SP  - 472
EP  - 487
VL  - 165
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2010_165_3_a4/
LA  - ru
ID  - TMF_2010_165_3_a4
ER  - 
%0 Journal Article
%A G. F. Helminck
%A V. A. Poberezhnyi
%T Moving poles of meromorphic linear systems on $\mathbb P^1(\mathbb C)$ in the~complex plane
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2010
%P 472-487
%V 165
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2010_165_3_a4/
%G ru
%F TMF_2010_165_3_a4
G. F. Helminck; V. A. Poberezhnyi. Moving poles of meromorphic linear systems on $\mathbb P^1(\mathbb C)$ in the~complex plane. Teoretičeskaâ i matematičeskaâ fizika, Tome 165 (2010) no. 3, pp. 472-487. http://geodesic.mathdoc.fr/item/TMF_2010_165_3_a4/