The relative frame bundle of an infinite-dimensional flag variety and solutions of integrable hierarchies
Teoretičeskaâ i matematičeskaâ fizika, Tome 165 (2010) no. 3, pp. 440-471 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We develop a group theory approach for constructing solutions of integrable hierarchies corresponding to the deformation of a collection of commuting directions inside the Lie algebra of upper-triangular $\mathbb Z{\times}\mathbb Z$ matrices. Depending on the choice of the set of commuting directions, the homogeneous space from which these solutions are constructed is the relative frame bundle of an infinite-dimensional flag variety or the infinite-dimensional flag variety itself. We give the evolution equations for the perturbations of the basic directions in the Lax form, and they reduce to a tower of differential and difference equations for the coefficients of these perturbed matrices. The Lax equations follow from the linearization of the hierarchy and require introducing a proper analogue of the Baker–Akhiezer function.
Keywords: upper-triangular $\mathbb Z{\times}\mathbb Z$ matrices, zero curvature form.
Mots-clés : Lax equations
@article{TMF_2010_165_3_a3,
     author = {G. F. Helminck and A. G. Helminck and A. V. Opimakh},
     title = {The~relative frame bundle of an~infinite-dimensional flag variety and solutions of integrable hierarchies},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {440--471},
     year = {2010},
     volume = {165},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2010_165_3_a3/}
}
TY  - JOUR
AU  - G. F. Helminck
AU  - A. G. Helminck
AU  - A. V. Opimakh
TI  - The relative frame bundle of an infinite-dimensional flag variety and solutions of integrable hierarchies
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2010
SP  - 440
EP  - 471
VL  - 165
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2010_165_3_a3/
LA  - ru
ID  - TMF_2010_165_3_a3
ER  - 
%0 Journal Article
%A G. F. Helminck
%A A. G. Helminck
%A A. V. Opimakh
%T The relative frame bundle of an infinite-dimensional flag variety and solutions of integrable hierarchies
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2010
%P 440-471
%V 165
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2010_165_3_a3/
%G ru
%F TMF_2010_165_3_a3
G. F. Helminck; A. G. Helminck; A. V. Opimakh. The relative frame bundle of an infinite-dimensional flag variety and solutions of integrable hierarchies. Teoretičeskaâ i matematičeskaâ fizika, Tome 165 (2010) no. 3, pp. 440-471. http://geodesic.mathdoc.fr/item/TMF_2010_165_3_a3/

[1] E. Date, M. Kashiwara, M. Jimbo, T. Miwa, “Transformation groups for soliton equations”, Nonlinear Integrable Systems – Classical Theory and Quantum Theory, eds. M. Jimbo, T. Miwa, World Sci., Singapore, 1983, 39–119 | MR | Zbl

[2] G. Segal, G. Wilson, Publ. Math. IHES, 61 (1985), 5–65 | DOI | MR | Zbl

[3] G. F. Helminck, J. W. van de Leur, Canad. J. Math., 53:2 (2001), 278–309 | DOI | MR | Zbl

[4] M. Toda, Nonlinear Waves and Solitons, Math. and its Appl., 5, Kluwer, Dordrecht, 1989 | MR | Zbl

[5] A. V. Mikhailov, M. A. Olshanetsky, A. M. Perelomov, Comm. Math. Phys., 79:4 (1981), 473–488 | DOI | MR | Zbl

[6] A. Okounkov, R. Pandharipande, Ann. Math. (2), 163:2 (2006), 561–605 | DOI | MR | Zbl

[7] T. Nakatsu, K. Takasaki, Comm. Math. Phys., 285:2 (2009), 445–468, arXiv: 0710.5339 | DOI | MR | Zbl

[8] R. Dijkgraaf, “Integrable hierarchies and quantum gravity”, Geometric and Quantum Aspects of Integrable Systems, Lecture Notes in Phys., 424, eds. G. F. Helminck, Springer, Berlin, 1993, 67–89 | DOI | MR | Zbl

[9] A. Gerasimov, A. Marshakov, A. Mironov, A. Morozov, A. Orlov, Nucl. Phys. B, 357:2–3 (1991), 565–618 | DOI | MR

[10] P. van Moerbeke, “Integrable foundations of string theory”, Lectures on Integrable Systems, eds. O. Babelon, P. Cartier, Y. Kosmann-Schwarzbach, World Sci., Singapore, 1994, 163–267 | MR | Zbl

[11] M. Adler, P. van Moerbeke, “Matrix integrals, Toda symmetries, Virasoro constraints and orthogonal polynomials”, R.C.P. 25, v. 47, Prépubl. Inst. Rech. Math. Av., 1995/24, Univ. Louis Pasteur, Strasbourg, 1995, 215–262, arXiv: solv-int/9706010 | MR

[12] L. Haine, E. Horozov, Bull. Sci. Math., 117:2 (1993), 485–518 | MR | Zbl

[13] M. A. Guest, Harmonic Maps, Loop Groups and Integrable Systems, Math. Soc. Stud. Texts, 38, Cambridge Univ. Press, London, 1997 | MR | Zbl

[14] A. Givental, “Stationary phase integrals, quantum Toda lattices, flag manifolds and the mirror conjecture”, Topics in Singularity Theory, Amer. Math. Soc. Transl. Ser. 2, 180, eds. A. Khovanskiĭ, A. Varchenko, V. Vassiliev, AMS, Providence, RI, 1997, 103–115 | MR | Zbl

[15] K. Ueno, K. Takasaki, “Toda lattice hierarchy”, Group Representations and Systems of Differential Equations, Adv. Stud. Pure Math., 4, ed. K. Okamoto, North-Holland, Amsterdam, 1984, 1–95 | MR | Zbl

[16] M. Adler, P. van Moerbeke, Internat. Math. Res. Notices, 1997:12 (1997), article ID 555, 572 pp. | DOI | MR | Zbl

[17] G. F. Helminck, A. V. Opimakh, “The zero curvature form of integrable hierarchies in the upper triangular matrices”, Algebra Colloq. (to appear) | MR

[18] S. Kobayashi, Differential Geometry of Complex Vector Bundles, Publ. Math. Soc. Japan, 15, Princeton Univ. Press, Princeton, NJ; Iwanami Shoten, Tokyo, 1987 | MR | Zbl

[19] R. Schatten, Norm Ideals of Completely Continuous Operators, Ergeb. Math. Grenzgeb., 27, Springer, Berlin, New York, 1970 | MR | Zbl

[20] A. Grothendieck, Am. J. Math., 79 (1957), 121–138 | DOI | MR | Zbl