Mots-clés : Lax equations
@article{TMF_2010_165_3_a3,
author = {G. F. Helminck and A. G. Helminck and A. V. Opimakh},
title = {The~relative frame bundle of an~infinite-dimensional flag variety and solutions of integrable hierarchies},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {440--471},
year = {2010},
volume = {165},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2010_165_3_a3/}
}
TY - JOUR AU - G. F. Helminck AU - A. G. Helminck AU - A. V. Opimakh TI - The relative frame bundle of an infinite-dimensional flag variety and solutions of integrable hierarchies JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2010 SP - 440 EP - 471 VL - 165 IS - 3 UR - http://geodesic.mathdoc.fr/item/TMF_2010_165_3_a3/ LA - ru ID - TMF_2010_165_3_a3 ER -
%0 Journal Article %A G. F. Helminck %A A. G. Helminck %A A. V. Opimakh %T The relative frame bundle of an infinite-dimensional flag variety and solutions of integrable hierarchies %J Teoretičeskaâ i matematičeskaâ fizika %D 2010 %P 440-471 %V 165 %N 3 %U http://geodesic.mathdoc.fr/item/TMF_2010_165_3_a3/ %G ru %F TMF_2010_165_3_a3
G. F. Helminck; A. G. Helminck; A. V. Opimakh. The relative frame bundle of an infinite-dimensional flag variety and solutions of integrable hierarchies. Teoretičeskaâ i matematičeskaâ fizika, Tome 165 (2010) no. 3, pp. 440-471. http://geodesic.mathdoc.fr/item/TMF_2010_165_3_a3/
[1] E. Date, M. Kashiwara, M. Jimbo, T. Miwa, “Transformation groups for soliton equations”, Nonlinear Integrable Systems – Classical Theory and Quantum Theory, eds. M. Jimbo, T. Miwa, World Sci., Singapore, 1983, 39–119 | MR | Zbl
[2] G. Segal, G. Wilson, Publ. Math. IHES, 61 (1985), 5–65 | DOI | MR | Zbl
[3] G. F. Helminck, J. W. van de Leur, Canad. J. Math., 53:2 (2001), 278–309 | DOI | MR | Zbl
[4] M. Toda, Nonlinear Waves and Solitons, Math. and its Appl., 5, Kluwer, Dordrecht, 1989 | MR | Zbl
[5] A. V. Mikhailov, M. A. Olshanetsky, A. M. Perelomov, Comm. Math. Phys., 79:4 (1981), 473–488 | DOI | MR | Zbl
[6] A. Okounkov, R. Pandharipande, Ann. Math. (2), 163:2 (2006), 561–605 | DOI | MR | Zbl
[7] T. Nakatsu, K. Takasaki, Comm. Math. Phys., 285:2 (2009), 445–468, arXiv: 0710.5339 | DOI | MR | Zbl
[8] R. Dijkgraaf, “Integrable hierarchies and quantum gravity”, Geometric and Quantum Aspects of Integrable Systems, Lecture Notes in Phys., 424, eds. G. F. Helminck, Springer, Berlin, 1993, 67–89 | DOI | MR | Zbl
[9] A. Gerasimov, A. Marshakov, A. Mironov, A. Morozov, A. Orlov, Nucl. Phys. B, 357:2–3 (1991), 565–618 | DOI | MR
[10] P. van Moerbeke, “Integrable foundations of string theory”, Lectures on Integrable Systems, eds. O. Babelon, P. Cartier, Y. Kosmann-Schwarzbach, World Sci., Singapore, 1994, 163–267 | MR | Zbl
[11] M. Adler, P. van Moerbeke, “Matrix integrals, Toda symmetries, Virasoro constraints and orthogonal polynomials”, R.C.P. 25, v. 47, Prépubl. Inst. Rech. Math. Av., 1995/24, Univ. Louis Pasteur, Strasbourg, 1995, 215–262, arXiv: solv-int/9706010 | MR
[12] L. Haine, E. Horozov, Bull. Sci. Math., 117:2 (1993), 485–518 | MR | Zbl
[13] M. A. Guest, Harmonic Maps, Loop Groups and Integrable Systems, Math. Soc. Stud. Texts, 38, Cambridge Univ. Press, London, 1997 | MR | Zbl
[14] A. Givental, “Stationary phase integrals, quantum Toda lattices, flag manifolds and the mirror conjecture”, Topics in Singularity Theory, Amer. Math. Soc. Transl. Ser. 2, 180, eds. A. Khovanskiĭ, A. Varchenko, V. Vassiliev, AMS, Providence, RI, 1997, 103–115 | MR | Zbl
[15] K. Ueno, K. Takasaki, “Toda lattice hierarchy”, Group Representations and Systems of Differential Equations, Adv. Stud. Pure Math., 4, ed. K. Okamoto, North-Holland, Amsterdam, 1984, 1–95 | MR | Zbl
[16] M. Adler, P. van Moerbeke, Internat. Math. Res. Notices, 1997:12 (1997), article ID 555, 572 pp. | DOI | MR | Zbl
[17] G. F. Helminck, A. V. Opimakh, “The zero curvature form of integrable hierarchies in the upper triangular matrices”, Algebra Colloq. (to appear) | MR
[18] S. Kobayashi, Differential Geometry of Complex Vector Bundles, Publ. Math. Soc. Japan, 15, Princeton Univ. Press, Princeton, NJ; Iwanami Shoten, Tokyo, 1987 | MR | Zbl
[19] R. Schatten, Norm Ideals of Completely Continuous Operators, Ergeb. Math. Grenzgeb., 27, Springer, Berlin, New York, 1970 | MR | Zbl
[20] A. Grothendieck, Am. J. Math., 79 (1957), 121–138 | DOI | MR | Zbl