Mots-clés : non-Abelian monopole
@article{TMF_2010_165_3_a1,
author = {H. W. Braden and V. Z. \`Enol'skii},
title = {Some remarks on {the~Ercolani{\textendash}Sinha~construction} of monopoles},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {389--425},
year = {2010},
volume = {165},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2010_165_3_a1/}
}
H. W. Braden; V. Z. Ènol'skii. Some remarks on the Ercolani–Sinha construction of monopoles. Teoretičeskaâ i matematičeskaâ fizika, Tome 165 (2010) no. 3, pp. 389-425. http://geodesic.mathdoc.fr/item/TMF_2010_165_3_a1/
[1] N. Manton, P. Sutcliffe, Topological Solitons, Cambridge Monogr. Math. Phys., Cambridge Univ. Press, Cambridge, 2004 | MR | Zbl
[2] N. J. Hitchin, Comm. Math. Phys., 83:4 (1982), 579–602 | DOI | MR | Zbl
[3] N. J. Hitchin, Comm. Math. Phys., 89:2 (1983), 145–190 | DOI | MR | Zbl
[4] W. Nahm, “The construction of all self-dual multimonopoles by the ADHM method”, Monopoles in Quantum Field Theory, eds. N. S. Craigie, P. Goddard, W. Nahm, World Sci., Singapore, 1982, 87–94 | MR
[5] N. Ercolani, A. Sinha, Comm. Math. Phys., 125:3 (1989), 385–416 | DOI | MR | Zbl
[6] B. A. Dubrovin, Funkts. analiz i ego pril., 11:4 (1977), 28–41 | DOI | MR | Zbl
[7] H. W. Braden, V. Z. Enolski, Remarks on the complex geometry of the 3-monopole, 2006, arXiv: math-ph/0601040 | MR
[8] G. U. Braden, V. Z. Enolskii, Matem. sb., 201:6 (2010), 19–74 | DOI
[9] H. W. Braden, V. Z. Enolski, Comm. Math. Phys., 299:1 (2010), 255–282, arXiv: 0908.3449 | DOI | MR
[10] H. W. Braden, V. Z. Enolski, Glasgow Math. J., 51:A (2009), 25–41, arXiv: 0806.1807 | DOI | MR | Zbl
[11] J. Hurtubise, Comm. Math. Phys., 92:2 (1983), 195–202 | DOI | MR | Zbl
[12] E. Corrigan, P. Goddard, Comm. Math. Phys., 80:4 (1981), 575–587 | DOI | MR
[13] J. D. Fay, Theta Functions on Riemann Surfaces, Lecture Notes in Math., 352, Springer, Berlin, 1973 | DOI | MR | Zbl
[14] A. Clebsch, P. Gordan, Theorie der Abelschen Funktionen, Teubner, Leipzig, 1866 | MR
[15] Yu. Fedorov, Acta Appl. Math., 55:3 (1999), 251–301 | DOI | MR | Zbl
[16] H. W. Braden, Yu. N. Fedorov, J. Geom. Phys., 58:10 (2008), 1346–1354, arXiv: math-ph/0701045 | DOI | MR | Zbl
[17] H. F. Baker, Abel's Theorem and the Allied Theory of Theta Functions, Cambridge Univ. Press, Cambridge, 1897, reprinted 1995 | MR | Zbl
[18] J.-ichi Igusa, Theta Functions, Grund. Math. Wiss., 194, Springer, Berlin, 1972 | MR | Zbl
[19] H. M. Farkas, I. Kra, Riemann Surfaces, Grad. Texts in Math., 71, Springer, New York, 1980 | DOI | MR | Zbl