Some remarks on the Ercolani–Sinha construction of monopoles
Teoretičeskaâ i matematičeskaâ fizika, Tome 165 (2010) no. 3, pp. 389-425 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We develop the Ercolani–Sinha construction of $SU(2)$ monopoles, which provides a gauge transform of the Nahm data.
Keywords: Yang–Mills field, theta function, completely integrable equation, algebraic curve.
Mots-clés : non-Abelian monopole
@article{TMF_2010_165_3_a1,
     author = {H. W. Braden and V. Z. \`Enol'skii},
     title = {Some remarks on {the~Ercolani{\textendash}Sinha~construction} of monopoles},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {389--425},
     year = {2010},
     volume = {165},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2010_165_3_a1/}
}
TY  - JOUR
AU  - H. W. Braden
AU  - V. Z. Ènol'skii
TI  - Some remarks on the Ercolani–Sinha construction of monopoles
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2010
SP  - 389
EP  - 425
VL  - 165
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2010_165_3_a1/
LA  - ru
ID  - TMF_2010_165_3_a1
ER  - 
%0 Journal Article
%A H. W. Braden
%A V. Z. Ènol'skii
%T Some remarks on the Ercolani–Sinha construction of monopoles
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2010
%P 389-425
%V 165
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2010_165_3_a1/
%G ru
%F TMF_2010_165_3_a1
H. W. Braden; V. Z. Ènol'skii. Some remarks on the Ercolani–Sinha construction of monopoles. Teoretičeskaâ i matematičeskaâ fizika, Tome 165 (2010) no. 3, pp. 389-425. http://geodesic.mathdoc.fr/item/TMF_2010_165_3_a1/

[1] N. Manton, P. Sutcliffe, Topological Solitons, Cambridge Monogr. Math. Phys., Cambridge Univ. Press, Cambridge, 2004 | MR | Zbl

[2] N. J. Hitchin, Comm. Math. Phys., 83:4 (1982), 579–602 | DOI | MR | Zbl

[3] N. J. Hitchin, Comm. Math. Phys., 89:2 (1983), 145–190 | DOI | MR | Zbl

[4] W. Nahm, “The construction of all self-dual multimonopoles by the ADHM method”, Monopoles in Quantum Field Theory, eds. N. S. Craigie, P. Goddard, W. Nahm, World Sci., Singapore, 1982, 87–94 | MR

[5] N. Ercolani, A. Sinha, Comm. Math. Phys., 125:3 (1989), 385–416 | DOI | MR | Zbl

[6] B. A. Dubrovin, Funkts. analiz i ego pril., 11:4 (1977), 28–41 | DOI | MR | Zbl

[7] H. W. Braden, V. Z. Enolski, Remarks on the complex geometry of the 3-monopole, 2006, arXiv: math-ph/0601040 | MR

[8] G. U. Braden, V. Z. Enolskii, Matem. sb., 201:6 (2010), 19–74 | DOI

[9] H. W. Braden, V. Z. Enolski, Comm. Math. Phys., 299:1 (2010), 255–282, arXiv: 0908.3449 | DOI | MR

[10] H. W. Braden, V. Z. Enolski, Glasgow Math. J., 51:A (2009), 25–41, arXiv: 0806.1807 | DOI | MR | Zbl

[11] J. Hurtubise, Comm. Math. Phys., 92:2 (1983), 195–202 | DOI | MR | Zbl

[12] E. Corrigan, P. Goddard, Comm. Math. Phys., 80:4 (1981), 575–587 | DOI | MR

[13] J. D. Fay, Theta Functions on Riemann Surfaces, Lecture Notes in Math., 352, Springer, Berlin, 1973 | DOI | MR | Zbl

[14] A. Clebsch, P. Gordan, Theorie der Abelschen Funktionen, Teubner, Leipzig, 1866 | MR

[15] Yu. Fedorov, Acta Appl. Math., 55:3 (1999), 251–301 | DOI | MR | Zbl

[16] H. W. Braden, Yu. N. Fedorov, J. Geom. Phys., 58:10 (2008), 1346–1354, arXiv: math-ph/0701045 | DOI | MR | Zbl

[17] H. F. Baker, Abel's Theorem and the Allied Theory of Theta Functions, Cambridge Univ. Press, Cambridge, 1897, reprinted 1995 | MR | Zbl

[18] J.-ichi Igusa, Theta Functions, Grund. Math. Wiss., 194, Springer, Berlin, 1972 | MR | Zbl

[19] H. M. Farkas, I. Kra, Riemann Surfaces, Grad. Texts in Math., 71, Springer, New York, 1980 | DOI | MR | Zbl