An anyon model
Teoretičeskaâ i matematičeskaâ fizika, Tome 165 (2010) no. 2, pp. 329-340 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We construct an infinite-dimensional dynamical Hamiltonian system that can be interpreted as a localized structure (“quasiparticle”) on the plane $E_{2}$. The model is based on the theory of an infinite string in the Minkowski space $E_{1,3}$ formulated in terms of the second fundamental forms of the worldsheet. The model phase space $\mathcal H$ is parameterized by the coordinates, which are interpreted as “internal” ($E(2)$-invariant) and “external” (elements of $T^*E_{2}$) degrees of freedom. The construction is nontrivial because $\mathcal H$ contains a finite number of constraints entangling these two groups of coordinates. We obtain the expressions for the energy and for the effective mass of the constructed system and the formula relating the proper angular momentum and the energy. We consider a possible interpretation of the proposed construction as an anyon model.
Keywords: anyon, infinite string, entangled state.
@article{TMF_2010_165_2_a9,
     author = {S. V. Talalov},
     title = {An~anyon model},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {329--340},
     year = {2010},
     volume = {165},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2010_165_2_a9/}
}
TY  - JOUR
AU  - S. V. Talalov
TI  - An anyon model
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2010
SP  - 329
EP  - 340
VL  - 165
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2010_165_2_a9/
LA  - ru
ID  - TMF_2010_165_2_a9
ER  - 
%0 Journal Article
%A S. V. Talalov
%T An anyon model
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2010
%P 329-340
%V 165
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2010_165_2_a9/
%G ru
%F TMF_2010_165_2_a9
S. V. Talalov. An anyon model. Teoretičeskaâ i matematičeskaâ fizika, Tome 165 (2010) no. 2, pp. 329-340. http://geodesic.mathdoc.fr/item/TMF_2010_165_2_a9/

[1] A. P. Protogenov, UFN, 162:7 (1992), 1–80 | DOI

[2] A. Yu. Kitaev, Ann. Phys., 303:1 (2003), 2–30, arXiv: quant-ph/9707021 | DOI | MR | Zbl

[3] M. G. Alford, F. Wilczek, Phys. Rev. Lett., 62:10 (1989), 1071–1074 | DOI | MR

[4] B. M. Barbashov, V. V. Nesterenko, Model relyativistskoi struny v fizike adronov, Energoatomizdat, M., 1987 | MR

[5] M. R. Anderson, The Mathematical Theory of Cosmic Strings. Cosmic Strings in the Wire Approximation, Ser. High Energy Phys. Cosmol. Gravit., IOP, Bristol, 2003 | MR | Zbl

[6] B. M. Barbashov, G. S. Sharov, TMF, 101:2 (1994), 253–271 | DOI | MR

[7] S. V. Talalov, J. Phys. A, 22:13 (1989), 2275–2284 | DOI | MR | Zbl

[8] S. V. Talalov, TMF, 123:1 (2000), 38–43 | DOI | MR | Zbl

[9] S. V. Talalov, TMF, 152:3 (2007), 430–439 | DOI | MR | Zbl

[10] A. K. Pogrebkov, S. V. Talalov, TMF, 70:3 (1987), 342–247 | DOI | MR

[11] L. A. Takhtadzhyan, L. D. Faddeev, Gamiltonov podkhod v teorii solitonov, Nauka, M., 1986 | MR | MR | Zbl

[12] V. I. Fuschich, A. G. Nikitin, Simmetriya uravnenii kvantovoi mekhaniki, Nauka, M., 1990 | MR | MR | Zbl

[13] J. Negro, M. A. del Olmo, J. Tosiek, J. Math. Phys., 47:3 (2006), 033508, 19 pp., arXiv: math-ph/0512007 | DOI | MR | Zbl

[14] N. Ya. Vilenkin, Spetsialnye funktsii i teoriya predstavlenii grupp, Nauka, M., 1965 | MR | MR | Zbl

[15] R. Jackiw, V. P. Nair, Phys. Lett. B, 480:1–2 (2000), 237–238, arXiv: hep-th/0003130 | DOI | MR | Zbl

[16] F. Dzh. Seffmen, Dinamika vikhrei, Nauchnyi mir, M., 2000 | MR | Zbl