A generating function for Hermite polynomials associated with Euclidean Landau levels
Teoretičeskaâ i matematičeskaâ fizika, Tome 165 (2010) no. 2, pp. 233-241 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We construct a generating function for the Hermite polynomials by comparing two expressions for the same coherent states associated with Landau levels in the planar problem. The first expression is found using a group theory construction, and the second expression is obtained using generalized canonical coherent states expanded as series in the basis of number states.
Mots-clés : Hermite polynomial
Keywords: generating function, coherent state, magnetic field, Landau level.
@article{TMF_2010_165_2_a2,
     author = {Z. Mouyan},
     title = {A~generating function for {Hermite} polynomials associated with {Euclidean} {Landau} levels},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {233--241},
     year = {2010},
     volume = {165},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2010_165_2_a2/}
}
TY  - JOUR
AU  - Z. Mouyan
TI  - A generating function for Hermite polynomials associated with Euclidean Landau levels
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2010
SP  - 233
EP  - 241
VL  - 165
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2010_165_2_a2/
LA  - ru
ID  - TMF_2010_165_2_a2
ER  - 
%0 Journal Article
%A Z. Mouyan
%T A generating function for Hermite polynomials associated with Euclidean Landau levels
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2010
%P 233-241
%V 165
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2010_165_2_a2/
%G ru
%F TMF_2010_165_2_a2
Z. Mouyan. A generating function for Hermite polynomials associated with Euclidean Landau levels. Teoretičeskaâ i matematičeskaâ fizika, Tome 165 (2010) no. 2, pp. 233-241. http://geodesic.mathdoc.fr/item/TMF_2010_165_2_a2/

[1] I. S. Gradshtein, I. M. Ryzhik, Tablitsy integralov, summ, ryadov i proizvedenii, Fizmatlit, M., 1971 | MR | MR | Zbl

[2] G. Sege, Ortogonalnye mnogochleny, Fizmatgiz, M., 1962 | MR | Zbl

[3] E. Schrödinger, Naturwissenschaften, 14:28 (1926), 664–666 | DOI | Zbl

[4] R. P. Feynman, Phys. Rev., 84:1 (1951), 108–128 | DOI | MR | Zbl

[5] R. J. Glauber, Phys. Rev., 84:3 (1951), 395–400 | DOI | Zbl

[6] G. Iwata, Progr. Theoret. Phys., 6:2 (1951), 216–226 | DOI | MR

[7] A. Perelomov, Comm. Math. Phys., 26:3 (1972), 222–236 | DOI | MR | Zbl

[8] V. V. Dodonov, J. Opt. B, 4:1 (2002), R1–R33 | DOI | MR

[9] G. D. Raikov, S. Warzel, Rev. Math. Phys., 14:10 (2002), 1051–1072, arXiv: math-ph/0201006 | DOI | MR | Zbl

[10] L. D. Landau, E. M. Lifshits, Teoreticheskaya fizika, v. III, Kvantovaya mekhanika. Nerelyativistskaya teoriya, Nauka, M., 2001 | MR | MR | Zbl

[11] G. B. Folland, Harmonic Analysis in Phase Space, Ann. Math. Stud., 122, Princeton Univ. Press, Princeton, NJ, 1989 | MR | Zbl

[12] M. E. Taylor, Noncommutative Harmonic Analysis, Math. Surv. Monogr., 22, AMS, Providence, RI, 1986 | DOI | MR | Zbl

[13] C. Benson, J. Jenkins, G. Ratcliff, J. Funct. Anal., 105:2 (1992), 409–443 | DOI | MR | Zbl

[14] M. Duflo, C. C. Moore, J. Funct. Anal., 21:2 (1976), 209–243 | DOI | MR | Zbl

[15] K. Thirulogasanthar, N. Saad, J. Phys. A, 37:16 (2004), 4567–4577, arXiv: math-ph/0403009 | DOI | MR | Zbl

[16] E. Ch. Titchmarsh, Vvedenie v teoriyu integralov Fure, OGIZ, M.–L., 1948 | MR | Zbl

[17] Z. Mouayn, J. Phys. A, 37:17 (2004), 4813–4819 | DOI | MR | Zbl