Clocks and Fisher information
Teoretičeskaâ i matematičeskaâ fizika, Tome 165 (2010) no. 2, pp. 370-384 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In a broad sense, any parametric family of quantum states can be viewed as a quantum clock. The time, which is the parameter, is encoded in the corresponding quantum states. The quality of such a clock depends on how precisely we can distinguish the states or, equivalently, estimate the parameter. In view of the quantum Cramér–Rao inequalities, the quality of quantum clocks can be characterized by the quantum Fisher information. We address the issue of quantum clock synchronization in terms of quantum Fisher information and demonstrate its fundamental difference from the classical paradigm. The key point is the superadditivity of Fisher information, which always holds in the classical case but can be violated in quantum mechanics. The violation can occur for both pure and mixed states. Nevertheless, we establish the superadditivity of quantum Fisher information for any classical–quantum state. We also demonstrate an alternative form of superadditivity and propose a weak form of superadditivity. The violation of superadditivity can be exploited to enhance quantum clock synchronization.
Keywords: Fisher information, quantum estimation, superadditivity, classical–quantum state, clock synchronization.
@article{TMF_2010_165_2_a12,
     author = {Ping Chen and Shunlong Luo},
     title = {Clocks and {Fisher} information},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {370--384},
     year = {2010},
     volume = {165},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2010_165_2_a12/}
}
TY  - JOUR
AU  - Ping Chen
AU  - Shunlong Luo
TI  - Clocks and Fisher information
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2010
SP  - 370
EP  - 384
VL  - 165
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2010_165_2_a12/
LA  - ru
ID  - TMF_2010_165_2_a12
ER  - 
%0 Journal Article
%A Ping Chen
%A Shunlong Luo
%T Clocks and Fisher information
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2010
%P 370-384
%V 165
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2010_165_2_a12/
%G ru
%F TMF_2010_165_2_a12
Ping Chen; Shunlong Luo. Clocks and Fisher information. Teoretičeskaâ i matematičeskaâ fizika, Tome 165 (2010) no. 2, pp. 370-384. http://geodesic.mathdoc.fr/item/TMF_2010_165_2_a12/

[1] D. Janzing, T. Beth, IEEE Trans. Inform. Theory, 49:1 (2003), 230–240, arXiv: quant-ph/0112138 | DOI | MR | Zbl

[2] R. A. Fisher, Proc. Camb. Phil. Soc., 22 (1925), 700–725 | DOI | Zbl

[3] C. R. Rao, Bull. Calcutta Math. Soc., 37 (1945), 81–91 | MR | Zbl

[4] H. Cramér, Mathematical Methods of Statistics, Princeton Math. Ser., 9, Princeton Univ. Press, Princeton, 1946 | MR | Zbl

[5] T. M. Cover, J. A. Thomas, Elements of Information Theory, Wiley Ser. Telecommun., John Wiley and Sons, New York, 1991 | DOI | MR | Zbl

[6] P. J. Huber, Robust Statistics, Wiley Ser. Probab. Math. Stat., John Wiley and Sons, New York, 1981 | DOI | MR | Zbl

[7] E. A. Carlen, J. Funct. Anal., 101:1 (1991), 194–211 | DOI | MR | Zbl

[8] A. Kagan, Z. Landsman, Statist. Probab. Lett., 32:2 (1997), 175–179 | DOI | MR | Zbl

[9] C. W. Helstrom, Quantum Detection and Estimation Theory, Academic Press, New York, 1976 | MR | Zbl

[10] A. S. Kholevo, Veroyatnostnye i statisticheskie aspekty kvantovoi teorii, Nauka, M., 1980 | MR | MR | Zbl

[11] S. L. Braunstein, C. M. Caves, Phys. Rev. Lett., 72:22 (1994), 3439–3443 | DOI | MR | Zbl

[12] D. Petz, Linear Algebra Appl., 244 (1996), 81–96 | DOI | MR | Zbl

[13] E. P. Wigner, M. M. Yanase, Proc. Natl. Acad. Sci. USA, 49:6 (1963), 910–918 | DOI | MR | Zbl

[14] P. Gibilisco, T. Isola, J. Math. Phys., 44:9 (2003), 3752–3762, arXiv: math/0304170 | DOI | MR | Zbl

[15] S. Luo, Proc. Amer. Math. Soc., 132 (2004), 885–890 | DOI | MR | Zbl

[16] S. Luo, Q. Zhang, Phys. Rev. A, 69:3 (2004), 032106, 8 pp. | DOI | MR

[17] S. Luo, Q. Zhang, IEEE Trans. Inform. Theory, 50:8 (2004), 1778–1782 ; 51 (2005), 4432 | DOI | MR | Zbl | DOI | MR | Zbl

[18] P. Chen, S. Luo, Front. Math. China, 2:3 (2007), 359–381 | DOI | MR | Zbl

[19] F. Hansen, Proc. Natl. Acad. Sci. USA, 105:29 (2008), 9909–9916, arXiv: math-ph/0607049 | DOI | MR | Zbl

[20] L. Cai, N. Li, S. Luo, J. Phys. A, 41:13 (2008), 135301, 9 pp. | DOI | MR | Zbl

[21] E. H. Lieb, Adv. Math., 11:3 (1973), 267–288 | DOI | MR | Zbl

[22] E. H. Lieb, M. B. Ruskai, Phys. Rev. Lett., 30:10 (1973), 434–436 | DOI | MR

[23] A. Uhlmann, Comm. Math. Phys., 54:1 (1977), 21–32 | DOI | MR | Zbl

[24] H. Kosaki, Comm. Math. Phys., 87:3 (1982), 315–329 | DOI | MR | Zbl

[25] M. A. Nielsen, I. L. Chuang, Quantum Computation and Quantum Information, Cambridge Univ. Press, Cambridge, 2000 | MR | Zbl

[26] F. Hansen, J. Stat. Phys., 126:3 (2007), 643–648, arXiv: math-ph/0609019 | DOI | MR | Zbl

[27] S. Luo, J. Stat. Phys., 128:5 (2007), 1177–1188 | DOI | MR | Zbl