Large-scale structures as gradient lines: The case of the Trkal flow
Teoretičeskaâ i matematičeskaâ fizika, Tome 165 (2010) no. 2, pp. 350-369 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Based on expansion terms of the Beltrami-flow type, we use multiscale methods to effectively construct an asymptotic expansion at large Reynolds numbers $R$ for the long-wavelength perturbation of the nonstationary anisotropic helical solution of the force-free Navier–Stokes equation (the Trkal solution). We prove that the systematic asymptotic procedure can be implemented only in the case where the scaling parameter is $R^{1/2}$. Projections of quasistationary large-scale streamlines on a plane orthogonal to the anisotropy direction turn out to be the gradient lines of the energy density determined by the initial conditions for two modulated anisotropic Beltrami flows (modulated as a result of scaling) with the same eigenvalues of the curl operator. The three-dimensional streamlines and the curl lines, not coinciding, fill invariant vorticity tubes inside which the velocity and vorticity vectors are collinear up to terms of the order of $1/R$.
Mots-clés : large-scale structure, Trkal solution, gradient line.
Keywords: Navier–Stokes equation, Beltrami flow, tube of velocities, vorticity tube
@article{TMF_2010_165_2_a11,
     author = {A. S. Libin},
     title = {Large-scale structures as gradient lines: {The~case} of {the~Trkal} flow},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {350--369},
     year = {2010},
     volume = {165},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2010_165_2_a11/}
}
TY  - JOUR
AU  - A. S. Libin
TI  - Large-scale structures as gradient lines: The case of the Trkal flow
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2010
SP  - 350
EP  - 369
VL  - 165
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2010_165_2_a11/
LA  - ru
ID  - TMF_2010_165_2_a11
ER  - 
%0 Journal Article
%A A. S. Libin
%T Large-scale structures as gradient lines: The case of the Trkal flow
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2010
%P 350-369
%V 165
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2010_165_2_a11/
%G ru
%F TMF_2010_165_2_a11
A. S. Libin. Large-scale structures as gradient lines: The case of the Trkal flow. Teoretičeskaâ i matematičeskaâ fizika, Tome 165 (2010) no. 2, pp. 350-369. http://geodesic.mathdoc.fr/item/TMF_2010_165_2_a11/

[1] E. Levich, A. Tsinober, Phys. Lett. A, 93:6 (1983), 293–297 | DOI | MR

[2] E. Levich, E. Tzvetkov, Phys. Lett. A, 100:1 (1984), 53–56 | DOI | MR

[3] E. Levich, Old and New Concepts Phys., 6:3 (2009), 239–457 | DOI

[4] A. Tsinober, E. Levich, Phys. Lett. A, 99:6–7 (1983), 321–324 | DOI | MR

[5] H. K. Moffatt, J. Fluid Mech., 159 (1985), 359–378 | DOI | MR | Zbl

[6] H. K. Moffatt, J. Fluid Mech., 166 (1986), 359–378 | DOI | Zbl

[7] H. K. Moffatt, “The topology of scalar fields in 2D and 3D turbulence”, IUTAM Symposium on Geometry and Statistics of Turbulence, Fluid Mech. Appl., 59, eds. T. Kambe, T. Nakano, T. Miyauchi, Kluwer, Dordrecht, 2001, 13–22 | MR | Zbl

[8] V. Trkal, Časopis št. Mat., 48 (1919), 302–311 | Zbl

[9] Ya. Andreopulos, Elektrokhimiya, 44:4 (2008), 422–428 | DOI

[10] Yeontaek Choi, Byong-Gu Kim, Changhoon Lee, Phys. Rev. E, 80:1 (2009), 017301, 4 pp. | DOI

[11] M. S. Lilley, S. Lovejoy, K. Strawbridge, D. Schertzer, A. Radkevich, Quart. J. Roy. Meteor. Soc., 134:631 (2008), 301–315 | DOI

[12] S. Lovejoy, A. Tuck, S. Hovde D. Schertzer, Geophys. Res. Lett., 34:15 (2007), L15802 | DOI

[13] S. Lovejoy, D. Schertzer, M. Lilley, K. Strawbridge, A. Radkevich, Quart. J. Roy. Meteor. Soc., 134:631 (2008), 277–300 | DOI

[14] P. D. Mininni, A. Alexakis, A. Pouquet, Phys. Rev. E, 74:1 (2006), 016303, 13 pp., arXiv: physics/0602148v2 | DOI

[15] P. D. Mininni, A. Alexakis, A. Pouquet, Phys. Rev. E, 77:3 (2008), 036306, 9 pp., arXiv: 07809.1939v1 | DOI

[16] J. Molinari, D. Vollaro, Monthly Weather Rev., 136:11 (2008), 4355–4372 | DOI

[17] Annick Pouquet, Figures and videos http://www.image.ucar.edu/~pouquet/Figs.htm

[18] A. Radkevich, S. Lovejoy, K. Strawbridge, D. Schertzer, M. Lilley, Quart. J. Roy. Meteor. Soc., 134:631 (2008), 317–335 | DOI

[19] G. I. Sivashinsky, Physica D, 17:2 (1985), 243–255 | DOI | MR | Zbl

[20] A. Libin, G. I. Sivashinsky, Quart. Appl. Math., 48:4 (1990), 611–623 | DOI | MR | Zbl

[21] A. Libin, G. I. Sivashinsky, Phys. Lett. A, 144:3 (1990), 172–178 | DOI

[22] L. Shtilman, G. Sivashinsky, J. de Physique, 47:7 (1986), 1137–1140 | DOI

[23] V. Yakhot, G. Sivashinsky, Phys. Rev. A, 35:2 (1987), 815–820 | DOI

[24] A. Libin, G. I. Sivashinsky, E. Levich, Phys. Fluids, 30:10 (1987), 2984–2986 | DOI | Zbl

[25] L. Polterovich, Chastnoe soobschenie, 2009

[26] V. I. Arnold, “Topologicheskaya klassifikatsiya trigonometricheskikh mnogochlenov affinnoi gruppy Koksetera $\widetilde A_2$”, Analiz i osobennosti. Chast 1, Sbornik statei. K 70-letiyu so dnya rozhdeniya akademika Vladimira Igorevicha Arnolda, Tr. MIAN, 258, Nauka, M., 2007, 7–16 | DOI | MR | Zbl