Vorticity transport in a viscoelastic fluid in the presence of suspended particles through porous media
Teoretičeskaâ i matematičeskaâ fizika, Tome 165 (2010) no. 2, pp. 341-349 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the transport of vorticity in an Oldroydian viscoelastic fluid in the presence of suspended magnetic particles through porous media. We obtain the equations governing such a transport of vorticity from the equations of magnetic fluid flow. It follows from these equations that the transport of solid vorticity is coupled to the transport of fluid vorticity in a porous medium. Further, we find that because of a thermokinetic process, fluid vorticity can exist in the absence of solid vorticity in a porous medium, but when fluid vorticity is zero, then solid vorticity is necessarily zero. We also study a two-dimensional case.
Keywords: Oldroydian viscoelastic fluid, suspended magnetic particle, vorticity, porous media.
@article{TMF_2010_165_2_a10,
     author = {P. Kumar and G. J. Singh},
     title = {Vorticity transport in a~viscoelastic fluid in the~presence of suspended particles through porous media},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {341--349},
     year = {2010},
     volume = {165},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2010_165_2_a10/}
}
TY  - JOUR
AU  - P. Kumar
AU  - G. J. Singh
TI  - Vorticity transport in a viscoelastic fluid in the presence of suspended particles through porous media
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2010
SP  - 341
EP  - 349
VL  - 165
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2010_165_2_a10/
LA  - ru
ID  - TMF_2010_165_2_a10
ER  - 
%0 Journal Article
%A P. Kumar
%A G. J. Singh
%T Vorticity transport in a viscoelastic fluid in the presence of suspended particles through porous media
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2010
%P 341-349
%V 165
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2010_165_2_a10/
%G ru
%F TMF_2010_165_2_a10
P. Kumar; G. J. Singh. Vorticity transport in a viscoelastic fluid in the presence of suspended particles through porous media. Teoretičeskaâ i matematičeskaâ fizika, Tome 165 (2010) no. 2, pp. 341-349. http://geodesic.mathdoc.fr/item/TMF_2010_165_2_a10/

[1] P. G. Saffman, J. Fluid Mech., 13 (1962), 120–128 | DOI | MR | Zbl

[2] D. K. Wagh, “A Mathematical model of magnetic fluid considered as two-phase system”, Proc. Int. Symp. on Magnetic Fluids (REC Kurukshetra, India, September 21–23, 1991), 182

[3] D. K. Wagh, A. Jawandhia, Indian J. Pure Appl. Phys., 34:5 (1996), 338–340

[4] Y. Yan, J. Koplik, Phys. Fluids, 21:1 (2009), 013301, 9 pp. | DOI | Zbl

[5] C. M. Vest, V. S. Arpaci, J. Fluid Mech., 36 (1969), 613–623 | DOI | Zbl

[6] P. K. Bhatia, J. M. Steiner, Z. Angew. Math. Mech., 52:6 (1972), 321–327 | DOI | Zbl

[7] B. A. Toms, D. J. Strawbridge, Trans. Faraday Soc., 49 (1953), 1225–1232 | DOI

[8] J. G. Oldroyd, Proc. Roy. Soc. A, 245:1241 (1958), 278–297 | DOI | MR | Zbl

[9] R. C. Sharma, Acta Physica Hung., 40:1 (1976), 11–17 | DOI

[10] I. A. Eltayeb, Z. Angew. Math. Mech., 55:10 (1975), 599–604 | DOI | Zbl

[11] O. M. Phillips, Flow and Reactions in Permeable Rocks, Cambridge Univ. Press, Cambridge, 1991

[12] D. B. Ingham, I. Pop (eds.), Transport Phenomena in Porous Media, Pergamon Press, Oxford, 1998 | MR | Zbl

[13] D. A. Nield, A. Bejan, Convection in Porous Medium, Springer, New York, 1999 | MR | Zbl

[14] E. R. Lapwood, Proc. Cambridge Philos. Soc., 44:4 (1948), 508–521 | DOI | MR | Zbl

[15] R. A. Wooding, J. Fluid Mech., 9 (1960), 183–192 | DOI | MR | Zbl

[16] R. C. Sharma, P. Kumar, Indian J. Pure Appl. Math., 24:9 (1993), 563–569 | Zbl

[17] R. C. Sharma, P. Kumar, Engrg. Trans., 44:1 (1996), 99–111 | MR

[18] P. Kumar, Z. Naturforsch., 51a (1996), 17–22

[19] P. Kumar, H. Mohan, G. J. Singh, Transp. Porous Media, 56:2 (2004), 199–208 | DOI | MR

[20] R. E. Rosensweig, Ferrohydrodynamics, Dover, New York, 1997