@article{TMF_2010_165_1_a7,
author = {R. S. Pusev},
title = {Asymptotics of small deviations of {the~Bogoliubov} processes with respect to a~quadratic norm},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {134--144},
year = {2010},
volume = {165},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2010_165_1_a7/}
}
TY - JOUR AU - R. S. Pusev TI - Asymptotics of small deviations of the Bogoliubov processes with respect to a quadratic norm JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2010 SP - 134 EP - 144 VL - 165 IS - 1 UR - http://geodesic.mathdoc.fr/item/TMF_2010_165_1_a7/ LA - ru ID - TMF_2010_165_1_a7 ER -
R. S. Pusev. Asymptotics of small deviations of the Bogoliubov processes with respect to a quadratic norm. Teoretičeskaâ i matematičeskaâ fizika, Tome 165 (2010) no. 1, pp. 134-144. http://geodesic.mathdoc.fr/item/TMF_2010_165_1_a7/
[1] D. P. Sankovich, TMF, 119:2 (1999), 345–352 | DOI | MR | Zbl
[2] D. P. Sankovich, TMF, 126:1 (2001), 149–163 | DOI | MR | Zbl
[3] N. N. Bogolyubov, Dokl. AN SSSR, 99:2 (1954), 225–226 | MR | Zbl
[4] D. P. Sankovich, TMF, 127:1 (2001), 125–142 | DOI | MR | Zbl
[5] V. R. Fatalov, TMF, 157:2 (2008), 286–308 | DOI | MR | Zbl
[6] W. V. Li, Q.-M. Shao, “Gaussian processes: inequalities, small ball probabilities and applications”, Stochastic Processes: Theory and Methods, Handbook Statist., 19, eds. D. N. Shanbhag, C. R. Rao, North-Holland, Amsterdam, 2001, 533–597 | DOI | MR | Zbl
[7] M. A. Lifshits, Bibliography of small deviation probabilities\par http://www.proba.jussieu.fr/pageperso/smalldev/biblio.pdf
[8] F. Ferraty, P. Vieu, Nonparametric Functional Data Analysis, Springer Ser. Statist., Springer, New York, 2006 | MR | Zbl
[9] A. W. van der Vaart, J. H. van Zanten, Ann. Statist., 36:3 (2008), 1435–1463 | DOI | MR | Zbl
[10] F. Aurzada, I. A. Ibragimov, M. A. Lifshits, H. J. van Zanden, TVP, 53:4 (2008), 788–798 | DOI | MR | Zbl
[11] L. Beghin, Ya. Yu. Nikitin, E. Orsingher, “Exact small ball constants for some Gaussian processes under $L^2$-norm”, Veroyatnost i statistika. 6, Zap. nauchn. sem. POMI, 298, POMI, SPb., 2003, 5–21 | DOI | MR | Zbl
[12] Ya. Yu. Nikitin, P. A. Kharinskii, “Tochnaya asimptotika malykh uklonenii v $L_2$-norme dlya odnogo klassa Gaussovskikh protsessov”, Veroyatnost i statistika. 7, Zap. nauchn. sem. POMI, 311, POMI, SPb., 2004, 214–221 | DOI | MR | Zbl
[13] A. I. Nazarov, Ya. Yu. Nikitin, Probab. Theory Related Fields, 129:4 (2004), 469–494 | DOI | MR | Zbl
[14] A. I. Nazarov, R. S. Pusev, “Tochnaya asimptotika malykh uklonenii v $L_2$-norme s vesom dlya nekotorykh gaussovskikh protsessov”, Veroyatnost i statistika. 14–2, Zap. nauchn. sem. POMI, 364, POMI, SPb., 2009, 166–199 | DOI | Zbl
[15] A. I. Nazarov, Problemy matem. analiza, 26 (2003), 179–213 | DOI | MR | Zbl
[16] A. I. Nazarov, J. Theoret. Probab., 22:3 (2009), 640–665 | DOI | MR | Zbl
[17] R. J. Adler, An Introduction to Continuity, Extrema and Related Topics for General Gaussian Processes, IMS Lecture Notes – Monograph Ser., 12, Institute of Mathematical Statistics, Hayward, California, 1990 | MR | Zbl
[18] V. A. Zorich, Matematicheskii analiz, Chast 2, MTsNMO, M., 1998 | MR | MR | Zbl
[19] E. Kamke, Spravochnik po obyknovennym differentsialnym uravneniyam, Lan, SPb., 2003 | MR | MR | Zbl
[20] I. S. Gradshtein, I. M. Ryzhik, Tablitsy integralov, summ, ryadov i proizvedenii, Fizmatlit, M., 1971 | MR | MR | Zbl
[21] E. Titchmarsh, Teoriya funktsii, Nauka, M., 1980 | MR | Zbl
[22] F. Gao, J. Hannig, F. Torcaso, Ann. Probab., 31:3 (2003), 1320–1337 | DOI | MR | Zbl
[23] A. Lachal, Math. Meth. Statist., 10 (2001), 73–104 | MR | Zbl
[24] P. Groeneboom, G. Jongbloed, J. A. Wellner, Ann. Statist., 29:6 (2001), 1620–1652 | DOI | MR | Zbl
[25] Ya. G. Sinai, TMF, 90:3 (1992), 323–353 | DOI | MR | Zbl
[26] G. Molchan, A. Khokhlov, J. Stat. Phys., 114:3–4 (2004), 923–946 | DOI | MR | Zbl
[27] L. Galleani, L. Sacerdote, P. Tavella, C. Zucca, Metrologia, 40:3 (2003), S257–S264 | DOI
[28] M. A. Naimark, Lineinye differentsialnye operatory, Nauka, M., 1969 | MR | MR | MR | Zbl