Destruction of dissipative structures under random actions
Teoretičeskaâ i matematičeskaâ fizika, Tome 165 (2010) no. 1, pp. 177-192 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider random-parameter chemical kinetic systems that are important in numerous physical, chemical, and biological applications. Random parameters describe the action of ambient medium fluctuations on the system. We estimate the probability that the system state remains in a given domain of the phase space during a time interval $[0,T]$ under the condition that the state at the initial instant was in $u_0$, where $u_0$ is the equilibrium solution describing a dissipative structure. We show that in some cases, the problem of maximizing this probability is reducible to the known problem of minimizing the Hopfield Hamiltonian.
Mots-clés : reaction–diffusion system
Keywords: random parameter, homeostasis, dissipative structure, spin glass.
@article{TMF_2010_165_1_a10,
     author = {S. A. Vakulenko and M. V. Cherkai},
     title = {Destruction of dissipative structures under random actions},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {177--192},
     year = {2010},
     volume = {165},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2010_165_1_a10/}
}
TY  - JOUR
AU  - S. A. Vakulenko
AU  - M. V. Cherkai
TI  - Destruction of dissipative structures under random actions
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2010
SP  - 177
EP  - 192
VL  - 165
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2010_165_1_a10/
LA  - ru
ID  - TMF_2010_165_1_a10
ER  - 
%0 Journal Article
%A S. A. Vakulenko
%A M. V. Cherkai
%T Destruction of dissipative structures under random actions
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2010
%P 177-192
%V 165
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2010_165_1_a10/
%G ru
%F TMF_2010_165_1_a10
S. A. Vakulenko; M. V. Cherkai. Destruction of dissipative structures under random actions. Teoretičeskaâ i matematičeskaâ fizika, Tome 165 (2010) no. 1, pp. 177-192. http://geodesic.mathdoc.fr/item/TMF_2010_165_1_a10/

[1] M. Gromov, A. Carbone, Gaz. Math., 88, suppl. (2001), 80 pp. | MR | Zbl

[2] J.-P. Aubin, Viability Theory, Systems and Control: Foundations and Applications, Birkhäuser, Boston, 1991 | MR | Zbl

[3] A. D. Ventsel, M. I. Freidlin, Random Perturbations of Dynamic Systems, Springer, New York, 1984 | MR

[4] S. Vakulenko, M. Reinitz, J. Reinitz, O. Radulescu, Phys. Rev. Lett., 103:16 (2009), 168102, 4 pp. | DOI

[5] M. Mézard, R. Zecchina, Phys. Rev. E, 66:5 (2002), 056126, 27 pp., arXiv: cond-mat/0207194 | DOI

[6] M. Talagrand, Spin Glasses: A Challenge for Mathematicians. Cavity and Mean Field Models, Ser. Modern Surv. Math., 46, Springer, Berlin, 2003 | MR | Zbl

[7] E. Friedgut, J. Amer. Math. Soc., 12:4 (1999), 1017–1054 | DOI | MR | Zbl

[8] D. Achlioptas, Theoret. Comput. Sci., 265:1–2 (2001), 159–185 | DOI | MR | Zbl

[9] R. Temam, Infinite-Dimensional Dynamical System in Mechanics and Physics, Appl. Math. Sci., 68, Springer, New York, 1997 | DOI | MR | Zbl

[10] D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Math., 840, Springer, Berlin, 1981 | DOI | MR | Zbl

[11] O. A. Ladyzhenskaya, UMN, 42:6(258) (1987), 25–60 | DOI | MR | Zbl

[12] Yu. S. Ilyaschenko, Uspekhi mekhaniki, 1 (1982), 31–63

[13] J. K. Hale, Asymptotic Behavior of Dissipative Systems, Math. Surv. Monogr., 25, AMS, Providence, RI, 1988 | MR | Zbl

[14] A. V. Savkin, R. J. Evans, Hybrid Dynamical Systems, Controller and Sensor Switching Problems, Control Eng., Birkhäuser, Boston, MA, 2002 | MR | Zbl

[15] D. Thieffry, R. Thomas, Bull. Math. Biol., 57 (1995), 277–297 | Zbl

[16] J. Smoller, Shock Waves and Reaction-Diffusion Equations, Springer, New York, 1983 | MR | Zbl

[17] C. Lobry, Chech. Math. J., 22(97) (1972), 230–237 | MR | Zbl

[18] M. Khirsh, Differentsialnaya topologiya, Mir, M., 1979 | MR | MR | Zbl

[19] H. J. Sussmann, SIAM J. Control Optim., 25:1 (1987), 158–194 | DOI | MR | Zbl

[20] A. A. Agrachev, Yu. L. Sachkov, Geometricheskaya teoriya upravleniya, Fizmatlit, M., 2005 | MR | Zbl

[21] N. N. Petrov, Differents. uravneniya, 4 (1968), 1218–1232 | MR | Zbl

[22] A. B. Vasileva, V. F. Butuzov, N. N. Nefedov, Fundament. i prikl. matem., 4:3 (1998), 799–851 | MR | Zbl

[23] V. S. Dotsenko, UFN, 163:6 (1993), 1–37 | DOI

[24] J. J. Hopfield, Proc. Natl. Acad. Sci. USA, 79:8 (1982), 2554–2558 | DOI | MR

[25] L. A. Pastur, A. L. Figotin, TMF, 35:2 (1978), 193–210 | DOI | MR

[26] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, Introduction to Algorithms, MIT Press, Cambridge, MA, 2001 | MR | Zbl

[27] A. M. Turing, Phil. Trans. R. Soc. Lond. Ser. B, 237:641 (1952), 37–72 | DOI | MR

[28] E. Mjolsness, D. H. Sharp, J. Reinitz, J. Theoret. Biol., 152:4 (1991), 429–453 | DOI