The equivalence of different approaches for generating multisoliton solutions of the KPII equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 165 (2010) no. 1, pp. 3-24 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The unexpectedly rich structure of the multisoliton solutions of the KPII equation has previously been explored using different approaches ranging from the dressing method to twisting transformations and the $\tau$-function formulation. All these approaches proved useful for displaying different properties of these solutions and the corresponding Jost solutions. The aim of our investigation is to establish explicit formulas relating all these approaches. We discuss some hidden invariance properties of these multisoliton solutions.
Keywords: KPII equation, Bäcklund transformation, tau function
Mots-clés : soliton.
@article{TMF_2010_165_1_a0,
     author = {M. Boiti and F. Pempinelli and A. K. Pogrebkov and B. Prinari},
     title = {The~equivalence of different approaches for generating multisoliton solutions of {the~KPII} equation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {3--24},
     year = {2010},
     volume = {165},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2010_165_1_a0/}
}
TY  - JOUR
AU  - M. Boiti
AU  - F. Pempinelli
AU  - A. K. Pogrebkov
AU  - B. Prinari
TI  - The equivalence of different approaches for generating multisoliton solutions of the KPII equation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2010
SP  - 3
EP  - 24
VL  - 165
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2010_165_1_a0/
LA  - ru
ID  - TMF_2010_165_1_a0
ER  - 
%0 Journal Article
%A M. Boiti
%A F. Pempinelli
%A A. K. Pogrebkov
%A B. Prinari
%T The equivalence of different approaches for generating multisoliton solutions of the KPII equation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2010
%P 3-24
%V 165
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2010_165_1_a0/
%G ru
%F TMF_2010_165_1_a0
M. Boiti; F. Pempinelli; A. K. Pogrebkov; B. Prinari. The equivalence of different approaches for generating multisoliton solutions of the KPII equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 165 (2010) no. 1, pp. 3-24. http://geodesic.mathdoc.fr/item/TMF_2010_165_1_a0/

[1] B. B. Kadomtsev, V. I. Petviashvili, Dokl. AN SSSR, 192 (1970), 753–756 | Zbl

[2] V. E. Zakharov, A. B. Shabat, Funkts. analiz i ego pril., 8:3 (1974), 43–53 | DOI | MR | Zbl

[3] V. S. Dryuma, Pisma v ZhETF, 19:12 (1974), 753–755

[4] M. J. Ablowitz, D. Bar Yaacov, A. S. Fokas, Stud. Appl. Math., 69:2 (1983), 135–143 | DOI | MR | Zbl

[5] V. G. Lipovskii, Funkts. analiz i ego pril., 20:4 (1986), 35–45 | DOI | MR | Zbl

[6] M. V. Wickerhauser, Comm. Math. Phys., 108:1 (1987), 67–89 | DOI | MR | Zbl

[7] P. G. Grinevich, S. P. Novikov, Funkts. analiz i ego pril., 22:1 (1988), 23–33 | DOI | MR | Zbl

[8] J. Satsuma, J. Phys. Soc. Japan, 40 (1976), 286–290 | DOI | MR | Zbl

[9] S. V. Manakov, V. E. Zakharov, L. A. Bordag, A. R. Its, V. B. Matveev, Phys. Lett. A, 63:3 (1977), 205–206 | DOI | MR

[10] B. G. Konopel'chenko, Solitons in Multidimensions: Inverse Spectral Transform Method, World Sci., Singapore, 1993 | MR | Zbl

[11] V. B. Matveev, M. A. Salle, Darboux Transformations and Solitons, Springer Ser. Nonlinear Dynam., Springer, Berlin, 1991 | DOI | MR | Zbl

[12] N. C. Freeman, J. J. C. Nimmo, Phys Lett. A, 95:1 (1983), 1–3 | DOI | MR

[13] J. W. Miles, J. Fluid Mech., 79 (1977), 157–169 ; 171–179 | DOI | Zbl | DOI | Zbl

[14] V. E. Zakharov, Radiofizika i kvantovaya elektronika, 29:9 (1986), 813–817 | DOI | MR

[15] M. Boiti, F. Pempinelli, B. Prinari, A. K. Pogrebkov, “Some nondecaying potentials for the heat conduction equation”, Proc. Workshop “Nonlinearity, Integrability and All That: Twenty Years After NEEDS ' 79”, eds. M. Boiti, L. Martina, F. Pempinelli, B. Prinari, G. Soliani, World Sci., Singapore, 2000, 42–50 | DOI | MR | Zbl

[16] B. Prinari, Inverse Problems, 16:3 (2000), 589–603 | DOI | MR | Zbl

[17] E. Medina, Lett. Math. Phys., 62:2 (2002), 91–99 | DOI | MR | Zbl

[18] M. Boiti, F. Pempinelli, A. Pogrebkov, B. Prinari, Inverse Problems, 17:4 (2001), 937–957, arXiv: nlin/0101030 | DOI | MR | Zbl

[19] G. Biondini, Y. Kodama, J. Phys. A, 36:42 (2003), 10519–10536, arXiv: nlin/0306003 | DOI | MR | Zbl

[20] G. Biondini, S. Chakravarty, J. Math. Phys., 47:3 (2006), 033514, 26 pp., arXiv: nlin/0511068 | DOI | MR | Zbl

[21] G. Biondini, S. Chakravarty, Math. Comput. Simulation, 74:2–3 (2007), 237–250 | DOI | MR | Zbl

[22] G. Biondini, Phys. Rev. Lett., 99:6 (2007), 064103, 4 pp. | DOI

[23] S. Chakravarty, Y. Kodama, J. Phys. A, 41:27 (2008), 275209, 33 pp., arXiv: 0710.1456 | DOI | MR | Zbl

[24] M. Sato, “Soliton equations as dynamical systems on an infinite dimensional Grassmann manifolds”, Random Systems and Dynamical Systems, RIMS Kokyuroku, 439, ed. H. Totoki, Kyoto Univ., Kyoto, 1981, 30–46 | MR | Zbl

[25] S. Chakravarty, Y. Kodama, Stud. Appl. Math., 123:1 (2009), 83–151, arXiv: 0902.4433 | DOI | MR | Zbl

[26] G. Biondini, K.-I. Maruno, M. Oikawa, H. Tsuji, Stud. Appl. Math., 122:4 (2009), 377–394, arXiv: 0903.5279 | DOI | MR | Zbl

[27] M. Boiti, F. Pempinelli, A. K. Pogrebkov, B. Prinari, TMF, 159:3 (2009), 364–378, arXiv: 0901.3857 | DOI | MR | Zbl

[28] M. Boiti, F. Pempinelli, A. K. Pogrebkov, B. Prinari, J. Math. Phys., 43:2 (2002), 1044–1062 | DOI | MR | Zbl

[29] J. Villarroel, M. J. Ablowitz, Stud. Appl. Math., 109:3 (2002), 151–162 ; Nonlinearity, 17:5 (2004), 1843–1866 | DOI | MR | Zbl | DOI | MR

[30] M. Boiti, F. Pempinelli, A. K. Pogrebkov, J. Math. Phys., 47:12 (2006), 123510, 43 pp. | DOI | MR | Zbl

[31] T. Miwa, M. Jimbo, E. Date, Solitons: Differential Equations, Symmetries and Infinite Dimensional Algebras, Cambridge Tracts Math., 135, Cambridge Univ. Press, Cambridge, 2000 | MR | Zbl

[32] M. Boiti, F. Pempinelli, A. K. Pogrebkov, B. Prinari, On the equivalence of different approaches for generating multisoliton solutions of the KPII equation, arXiv: 0911.1675

[33] S. Chakravarty, T. Lewkowa, K.-i. Maruno, On the construction of the KP line-solitons and their interactions, arXiv: 0911.2290v1 | MR

[34] P. G. Grinevich, A. Yu. Orlov, “Virasoro action on Riemann surfaces, grassmannians, $\det\bar\partial_j$ and Segal–Wilson $\tau$-function”, Problems of Modern Quantum Field Theory, Res. Rep. Phys., eds. A. A. Belavin, A. U. Klimyk, A. B. Zamolodchikov, Springer, Berlin, 1989, 86–106 | DOI | MR

[35] F. R. Gantmakher, M. G. Krein, Ostsillyatsionnye matritsy i yadra i malye kolebaniya mekhanicheskikh sistem, GTTI, M., L., 1950 | MR | MR | Zbl

[36] F. R. Gantmakher, Teoriya matrits, Nauka, M., 1988 | MR | MR | Zbl