Integrable equations for the model with $N$ sources and $n-1$ modes
Teoretičeskaâ i matematičeskaâ fizika, Tome 164 (2010) no. 3, pp. 410-418 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider simplified models of coupling charged matter to radiation resonance modes generalizing the well-known Jaynes–Cummings and Dicke models. We find that these new models are integrable for arbitrary numbers of dipole sources and resonance modes of the radiation field. We discuss the problem of explicitly diagonalizing the corresponding Hamiltonians.
Keywords: quantum optics, radiation–matter coupling, integrability.
@article{TMF_2010_164_3_a9,
     author = {B. I. Sadovnikov and N. G. Inozemtseva and V. I. Inozemtsev},
     title = {Integrable equations for the~model with $N$ sources and $n-1$ modes},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {410--418},
     year = {2010},
     volume = {164},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2010_164_3_a9/}
}
TY  - JOUR
AU  - B. I. Sadovnikov
AU  - N. G. Inozemtseva
AU  - V. I. Inozemtsev
TI  - Integrable equations for the model with $N$ sources and $n-1$ modes
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2010
SP  - 410
EP  - 418
VL  - 164
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2010_164_3_a9/
LA  - ru
ID  - TMF_2010_164_3_a9
ER  - 
%0 Journal Article
%A B. I. Sadovnikov
%A N. G. Inozemtseva
%A V. I. Inozemtsev
%T Integrable equations for the model with $N$ sources and $n-1$ modes
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2010
%P 410-418
%V 164
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2010_164_3_a9/
%G ru
%F TMF_2010_164_3_a9
B. I. Sadovnikov; N. G. Inozemtseva; V. I. Inozemtsev. Integrable equations for the model with $N$ sources and $n-1$ modes. Teoretičeskaâ i matematičeskaâ fizika, Tome 164 (2010) no. 3, pp. 410-418. http://geodesic.mathdoc.fr/item/TMF_2010_164_3_a9/

[1] R. H. Dicke, Phys. Rev., 93:1 (1954), 99–110 | DOI | Zbl

[2] F. W. Cummings, Phys. Rev., 140:4A (1965), A1051–A1056 | DOI

[3] W. Heitler, The Quantum Theory of Radiation, Clarendon Press, Oxford; Oxford Univ. Press, London, 1954 | Zbl

[4] L. Allen, J. Eberly, Optical Resonance and Two-Level Atoms, Wiley, New York, 1975

[5] B. Jurčo, J. Math. Phys., 30:8 (1989), 1739–1743 | DOI | MR | Zbl

[6] A. Rybin, G. Kastelewicz, J. Timonen, N. Bogolubov, J. Phys. A, 31:20 (1998), 4705–4723 | DOI | MR | Zbl

[7] T. Skrypnyk, J. Math. Phys., 50:10 (2009), 103523, 25 pp. | DOI | MR | Zbl

[8] O. Babelon, D. Talalaev, J. Stat. Mech., 06 (2007), P06013, 16 pp., arXiv: hep-th/0703124 | DOI | MR

[9] X.-S. Li, N.-Yu. Bei, Phys. Lett. A, 101:3 (1984), 169–174 | DOI

[10] A. Abdel-Hafez, A.-S.F. Obada, M. M. A. Ahmad, Phys. Rev. A, 35:4 (1987), 1634–1647 | DOI

[11] M. Gaudin, J. de Physique, 37:10 (1976), 1087–1098 | DOI | MR

[12] M. Gaudin, La fonction d'onde de Bethe, Masson, Paris, 1983 | MR | Zbl