Two-particle wave function as an integral operator and the random field approach to quantum correlations
Teoretičeskaâ i matematičeskaâ fizika, Tome 164 (2010) no. 3, pp. 386-393 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We propose a new interpretation of the wave function $\Psi(x,y)$ of a two-particle quantum system, interpreting it not as an element of the functional space $L_2$ of square-integrable functions, i.e., as a vector, but as the kernel of an integral (Hilbert–Schmidt) operator. The first part of the paper is devoted to expressing quantum averages including the correlations in two-particle systems using the wave-function operator. This is a new mathematical representation in the framework of conventional quantum mechanics. But the new interpretation of the wave function not only generates a new mathematical formalism for quantum mechanics but also allows going beyond quantum mechanics, i.e., representing quantum correlations (including those in entangled systems) as correlations of (Gaussian) random fields.
Keywords: classical wave, quantum average, wave function, integral operator.
@article{TMF_2010_164_3_a6,
     author = {A. Yu. Khrennikov},
     title = {Two-particle wave function as an~integral operator and the~random field approach to quantum correlations},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {386--393},
     year = {2010},
     volume = {164},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2010_164_3_a6/}
}
TY  - JOUR
AU  - A. Yu. Khrennikov
TI  - Two-particle wave function as an integral operator and the random field approach to quantum correlations
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2010
SP  - 386
EP  - 393
VL  - 164
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2010_164_3_a6/
LA  - ru
ID  - TMF_2010_164_3_a6
ER  - 
%0 Journal Article
%A A. Yu. Khrennikov
%T Two-particle wave function as an integral operator and the random field approach to quantum correlations
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2010
%P 386-393
%V 164
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2010_164_3_a6/
%G ru
%F TMF_2010_164_3_a6
A. Yu. Khrennikov. Two-particle wave function as an integral operator and the random field approach to quantum correlations. Teoretičeskaâ i matematičeskaâ fizika, Tome 164 (2010) no. 3, pp. 386-393. http://geodesic.mathdoc.fr/item/TMF_2010_164_3_a6/

[1] A. Khrennikov, Demystification of quantum entanglement, arXiv: 0905.4791

[2] A. Bach, J. Math. Phys., 14:1 (1981), 125–132 ; Phys. Lett. A, 73:4 (1979), 287–288 ; J. Math. Phys., 21:4 (1980), 789–793 | DOI | MR | DOI | MR | DOI | MR | Zbl

[3] J. Kupsch, O. G. Smolyanov, N. A. Sidorova, J. Math. Phys., 42:3 (2001), 1026–1037, arXiv: math-ph/0012025 | DOI | MR | Zbl

[4] A. Khrennikov, J. Math. Phys., 48:1 (2007), 013512, 18 pp. ; J. Phys. A, 38:41 (2005), 9051–9073, arXiv: ; Found. Phys. Lett., 18:7 (2005), 637–650 ; Phys. Lett. A, 357:3 (2006), 171–176, arXiv: ; Found. Phys. Lett., 19:4 (2006), 299–319 ; Nuovo Cimento B, 121:5 (2006), 505–521, arXiv: ; Phys. Lett. A, 372:44 (2008), 6588–6592 quant-ph/0505228quant-ph/0602210hep-th/0604163 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | MR | DOI | MR | Zbl

[5] I. V. Volovich, “Quantum cryptography in space and Bell's theorem”, Foundations of Probability and Physics, Quantum Probab. White Noise Anal., 13, ed. A. Khrennikov, World Sci., River Edge, NJ, 2001, 364–372 | MR | Zbl

[6] I. V. Volovich, “Towards quantum information theory in space and time”, Quantum Theory: Reconsideration of Foundations, ed. A. Khrennikov, Växjö Univ. Press, Växjö, 2002, 423–440 | MR