Nonlocal dynamics of $p$-adic strings
Teoretičeskaâ i matematičeskaâ fizika, Tome 164 (2010) no. 3, pp. 380-385 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the construction of Lagrangians that might be suitable for describing the entire $p$-adic sector of an adelic open scalar string. These Lagrangians are constructed using the Lagrangian for $p$-adic strings with an arbitrary prime number $p$. They contain space–time nonlocality because of the d'Alembertian in the argument of the Riemann zeta function. We present a brief review and some new results.
Keywords: nonlocal field theory, $p$-adic string, Riemann zeta function.
@article{TMF_2010_164_3_a5,
     author = {B. G. Dragovich},
     title = {Nonlocal dynamics of $p$-adic strings},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {380--385},
     year = {2010},
     volume = {164},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2010_164_3_a5/}
}
TY  - JOUR
AU  - B. G. Dragovich
TI  - Nonlocal dynamics of $p$-adic strings
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2010
SP  - 380
EP  - 385
VL  - 164
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2010_164_3_a5/
LA  - ru
ID  - TMF_2010_164_3_a5
ER  - 
%0 Journal Article
%A B. G. Dragovich
%T Nonlocal dynamics of $p$-adic strings
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2010
%P 380-385
%V 164
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2010_164_3_a5/
%G ru
%F TMF_2010_164_3_a5
B. G. Dragovich. Nonlocal dynamics of $p$-adic strings. Teoretičeskaâ i matematičeskaâ fizika, Tome 164 (2010) no. 3, pp. 380-385. http://geodesic.mathdoc.fr/item/TMF_2010_164_3_a5/

[1] I. V. Volovich, TMF, 71:3 (1987), 337–340 | DOI | MR | Zbl

[2] L. Brekke, P. G. O. Freund, Phys. Rep., 233:1 (1993), 1–66 | DOI | MR

[3] V. S. Vladimirov, I. V. Volovich, E. I. Zelenov, $p$-Adicheskii analiz i matematicheskaya fizika, Nauka, M., 1994 | MR | MR | Zbl

[4] B. Dragovich, A. Yu. Khrennikov, S. V. Kozyrev, I. V. Volovich, $p$-Adic Numbers, Ultrametric Anal. Appl., 1:1 (2009), 1–17, arXiv: 0904.4205 | DOI | MR

[5] L. Brekke, P. G. O. Freund, M. Olson, E. Witten, Nucl. Phys. B, 302:3 (1988), 365–402 | DOI | MR

[6] P. H. Frampton, Y. Okada, Phys. Rev. D, 37:10 (1988), 3077–3079 | DOI | MR

[7] D. Ghoshal, A. Sen, Nucl. Phys. B, 584:1–2 (2000), 300–312, arXiv: hep-th/0003278 | DOI | MR | Zbl

[8] N. Moeller, B. Zwiebach, JHEP, 10 (2002), 034, 39 pp., arXiv: hep-th/0207107 | DOI | MR

[9] V. S. Vladimirov, $p$-Adic Numbers, Ultrametric Anal. Appl., 1:1 (2009), 79–87 | DOI | MR | Zbl

[10] I. Ya. Aref'eva, “Nonlocal string tachyon as a model for cosmological dark energy”, $p$-Adic Mathematical Physics, AIP Conf. Proc., 826, eds. A. Yu. Khrennikov, Zoran Rakić, I. V. Volovich, AIP, New York, 2006, 301–311, arXiv: astro-ph/0410443 | DOI | MR | Zbl

[11] N. Barnaby, T. Biswas, J. M. Cline, JHEP, 04 (2007), 056, 35 pp., arXiv: hep-th/0612230 | DOI | MR

[12] I. Ya. Aref'eva, I. V. Volovich, Int. J. Geom. Methods Mod. Phys., 4:5 (2007), 881–895, arXiv: hep-th/0701284 | DOI | MR | Zbl

[13] I. M. Gelfand, M. I. Graev, I. I. Pyatetskii-Shapiro, Teoriya predstavlenii i avtomorfnye funktsii, Nauka, M., 1966 | MR | MR | Zbl

[14] B. G. Dragovich, TMF, 163:3 (2010), 449–455, arXiv: 0911.3625 | DOI | MR | Zbl

[15] I. Ya. Aref'eva, B. Dragović, I. V. Volovich, Phys. Lett. B, 209:4 (1988), 445–450 | DOI | MR

[16] B. Dragovich, Zeta strings, arXiv: hep-th/0703008

[17] B. G. Dragovich, TMF, 157:3 (2008), 364–372, arXiv: 0804.4114 | DOI | MR | Zbl

[18] B. Dragovich, “Some Lagrangians with zeta function nonlocality”, Problems of Modern Theoretical Physics, a volume in honour of Prof. I. L. Buchbinder on the occasion of his 60th birthday (Tomsk, Russia, 2008), Tomsk State Pedagogical Univ., 146–153, arXiv: 0805.0403

[19] B. Dragovich, Romanian J. Phys., 53:9–10 (2008), 1105–1110, arXiv: 0809.1601 | MR

[20] B. Dragovich, Fortschr. Phys., 57:5–7 (2009), 546–551, arXiv: 0902.0295 | DOI | MR | Zbl

[21] J. Sondow, Proc. Amer. Math. Soc., 120:2 (1994), 421–424 | DOI | MR | Zbl

[22] A. S. Koshelev, SFT non-locality in cosmology: solutions, perturbations and observational evidences, arXiv: 0912.5457