Harmonic spheres conjecture
Teoretičeskaâ i matematičeskaâ fizika, Tome 164 (2010) no. 3, pp. 368-379
Cet article a éte moissonné depuis la source Math-Net.Ru
We discuss the harmonic spheres conjecture that the space of harmonic maps of the Riemann sphere into the loop space of a compact Lie group $G$ are related to the moduli space of Yang–Mills $G$-fields on the four-dimensional Euclidean space.
Keywords:
harmonic map, Yang–Mills field, loop space, twistor space.
@article{TMF_2010_164_3_a4,
author = {A. G. Sergeev},
title = {Harmonic spheres conjecture},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {368--379},
year = {2010},
volume = {164},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2010_164_3_a4/}
}
A. G. Sergeev. Harmonic spheres conjecture. Teoretičeskaâ i matematičeskaâ fizika, Tome 164 (2010) no. 3, pp. 368-379. http://geodesic.mathdoc.fr/item/TMF_2010_164_3_a4/
[1] M. F. Atiyah, Comm. Math. Phys., 93:4 (1984), 437–451 | DOI | MR | Zbl
[2] S. K. Donaldson, Comm. Math. Phys., 93:4 (1984), 453–460 | DOI | MR | Zbl
[3] M. Atya, Geometriya i fizika uzlov, Mir, M., 1995 | MR | MR | Zbl
[4] M. F. Atiyah, N. J. Hitchin, I. M. Singer, Proc. R. Soc. Lond. Ser. A, 362:1711 (1978), 425–461 | DOI | MR | Zbl
[5] J. Eells, S. Salamon, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 12:4 (1985), 589–640 | MR | Zbl
[6] F. E. Burstall, S. M. Salamon, Math. Ann., 277:2 (1987), 249–265 | DOI | MR | Zbl
[7] E. Presli, G. Sigal, Gruppy petel, Mir, M., 1990 | MR | MR | Zbl