Generalized entropy of the Heisenberg spin chain
Teoretičeskaâ i matematičeskaâ fizika, Tome 164 (2010) no. 3, pp. 363-367 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the XY quantum spin chain in a transverse magnetic field. We consider the Rényi entropy of a block of neighboring spins at zero temperature on an infinite lattice. the Rényi entropy is essentially the trace of some power $\alpha$ of the density matrix of the block. We calculate the entropy of the large block in terms of Klein's elliptic $\lambda$-function. We study the limit entropy as a function of its parameter $\alpha$. We show that the Rényi entropy is essentially an automorphic function with respect to a certain subgroup of the modular group. Using this, we derive the transformation properties of the Rényi entropy under the map $\alpha\to\alpha^{-1}$.
Mots-clés : quantum entanglement, spin chain
Keywords: Bethe ansatz.
@article{TMF_2010_164_3_a3,
     author = {A. R. Its and V. E. Korepin},
     title = {Generalized entropy of {the~Heisenberg} spin chain},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {363--367},
     year = {2010},
     volume = {164},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2010_164_3_a3/}
}
TY  - JOUR
AU  - A. R. Its
AU  - V. E. Korepin
TI  - Generalized entropy of the Heisenberg spin chain
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2010
SP  - 363
EP  - 367
VL  - 164
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2010_164_3_a3/
LA  - ru
ID  - TMF_2010_164_3_a3
ER  - 
%0 Journal Article
%A A. R. Its
%A V. E. Korepin
%T Generalized entropy of the Heisenberg spin chain
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2010
%P 363-367
%V 164
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2010_164_3_a3/
%G ru
%F TMF_2010_164_3_a3
A. R. Its; V. E. Korepin. Generalized entropy of the Heisenberg spin chain. Teoretičeskaâ i matematičeskaâ fizika, Tome 164 (2010) no. 3, pp. 363-367. http://geodesic.mathdoc.fr/item/TMF_2010_164_3_a3/

[1] E. Lieb, T. Schultz, D. Mattis, Ann. Phys., 16 (1961), 407–466 | DOI | MR | Zbl

[2] E. Barouch, B. M. McCoy, Phys. Rev. A, 3:2 (1971), 786–804 | DOI

[3] E. Barouch, B. M. McCoy, M. Dresden, Phys. Rev. A, 2:3 (1970), 1075–1092 | DOI

[4] D. B. Abraham, E. Barouch, G. Gallavotti, A. Martin-Löf, Phys. Rev. Lett., 25:20 (1970), 1449–1450 ; Stud. Appl. Math., 50 (1971), 121 ; 51 (1972), 211 | DOI | DOI | DOI

[5] G. Müller, R. E. Shrock, Phys. Rev. B, 32:9 (1985), 5845–5850 ; J. Kurmann, H. Thomas, G. Müller, Phys. A, 112:1–2 (1982), 235–255 | DOI | DOI

[6] C. H. Bennett, H. J. Bernstein, S. Popescu, B. Schumacher, Phys. Rev. A, 53:4 (1996), 2046–2052, arXiv: quant-ph/9511030 | DOI

[7] A. Rényi, Probability Theory, North-Holland Ser. Appl. Math. Mech., 10, Amsterdam, North-Holland, 1970 | MR | Zbl

[8] S. Abe, A. K. Rajagopal, Phys. Rev. A, 60:5 (1999), 3461–3466, arXiv: quant-ph/9904088 | DOI | MR

[9] B.-Q. Jin, V. E. Korepin, J. Stat. Phys., 116:1–4 (2004), 79–95, arXiv: quant-ph/0304108 | DOI | MR | Zbl

[10] A. R. Its, B.-Q. Jin, V. E. Korepin, J. Phys. A, 38:13 (2005), 2975–2990, arXiv: quant-ph/0409027 | DOI | MR | Zbl

[11] M. E. Fisher, R. E. Hartwig, “Toeplitz determinants: some applications, theorems, and conjectures”, Stochastic Processes in Chemical Physics, Adv. Chem. Phys., 15, ed. K. E. Shuler, 1968, 333–353 | DOI

[12] E. L. Basor, Indiana Univ. Math. J., 28:6 (1979), 975–983 | DOI | MR | Zbl

[13] E. L. Basor, C. A. Tracy, Phys. A, 177:1–3 (1991), 167–173 | DOI | MR

[14] A. Böttcher, B. Silbermann, Analysis of Toeplitz Operators, Springer, Berlin, 1990 | MR | Zbl

[15] A. R. Its, B.-Q. Jin, V. E. Korepin, J. Phys. A, 38:13 (2005), 2975–2990, arXiv: quant-ph/0409027 | DOI | MR | Zbl

[16] A. R. Its, B.-Q. Jin, V. E. Korepin, “Entropy of $XY$ spin chain and block Toeplitz determinants”, Universality and Renormalization, Fields Inst. Commun., 50, eds. I. Binder, D. Kreimer, AMS, Providence, RI, 2007, 151–183, arXiv: quant-ph/0606178 | MR | Zbl

[17] F. Franchini, A. R. Its, B.-Q. Jin, V. E. Korepin, Analysis of entropy of XY spin chain, arXiv: quant-ph/0606240 | MR

[18] F. Franchini, A. R. Its, B.-Q. Jin, V. E. Korepin, J. Phys. A, 40:29 (2007), 8467–8478, arXiv: quant-ph/0609098 | DOI | MR | Zbl

[19] J. P. Keating, F. Mezzadri, Comm. Math. Phys., 252:1–3 (2004), 543–579, arXiv: quant-ph/0407047 | DOI | MR | Zbl

[20] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii, Spravochnaya matematicheskaya biblioteka, Nauka, M., 1967 | MR | MR | Zbl

[21] E. T. Uitteker, Dzh. N. Vatson, Kurs sovremennogo analiza. Ch. 2. Transtsendentnye funktsii, M., 1963 | MR | Zbl

[22] F. Klein, R. Fricke, Vorlesungen über die Theorie der elliptischen Modulfunktionen, v. 2, Teubner, Leipzig, 1890 | MR | Zbl

[23] N. I. Akhiezer, Elementy teorii ellipticheskikh funktsii, Nauka, M., 1970 | MR | Zbl

[24] L. Ahlfors, Complex Analysis, Internat. Ser. Pure Appl. Math., McGraw-Hill, New York, 1978 | MR | Zbl

[25] E. W. Weisstein, Elliptic lambda function \par http://mathworld.wolfram.com/ EllipticLambdaFunction.html

[26] E. W. Weisstein, Klein's absolute invariant \par http://mathworld.wolfram.com/ KleinsAbsoluteInvariant.html