@article{TMF_2010_164_3_a2,
author = {I. V. Volovich},
title = {Bogoliubov equations and functional mechanics},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {354--362},
year = {2010},
volume = {164},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2010_164_3_a2/}
}
I. V. Volovich. Bogoliubov equations and functional mechanics. Teoretičeskaâ i matematičeskaâ fizika, Tome 164 (2010) no. 3, pp. 354-362. http://geodesic.mathdoc.fr/item/TMF_2010_164_3_a2/
[1] N. N. Bogolyubov, Problemy dinamicheskoi teorii v statisticheskoi fizike, Gostekhizdat, M., L., 1946 | MR | MR | Zbl
[2] L. Boltsman, Lektsii po teorii gazov, Gostekhizdat, M., 1953 | MR | Zbl
[3] A. Puankare, “Mekhanitsizm i opyt”: L. Boltsman, Izbrannye trudy, Nauka, M., 1984, 434–437 | MR
[4] A. Kolmogoroff, Math. Ann., 113:1 (1937), 766–772 | DOI | MR | Zbl
[5] L. D. Landau, E. M. Lifshits, Teoreticheskaya fizika, v. 5, Statisticheskaya fizika. Ch. 1. Teoriya ravnovesnykh sistem, Nauka, M., 1964 | MR | MR | Zbl
[6] D. N. Zubarev, Neravnovesnaya statisticheskaya termodinamika, Fizmatlit, M., 1971 | MR
[7] I. Prigogine, Les Lois du Chaos, Flammarion, Paris, 1993 | MR
[8] V. V. Kozlov, Teplovoe ravnovesie po Gibbsu i Puankare, Sovremennaya matematika, RKhD, M., Izhevsk, 2002 | MR | Zbl
[9] V. V. Kozlov, Ansambli Gibbsa i neravnovesnaya statisticheskaya mekhanika, NITs “Regulyarnaya i khaoticheskaya dinamika”, M.–Izhevsk, 2008
[10] V. L. Ginzburg, “Kakie problemy fiziki i astrofiziki predstavlyayutsya osobenno vazhnymi i interesnymi v nachale XXI veka?”, O nauke, o sebe i o drugikh, Fizmatlit, M., 2003, 11–74 | MR | Zbl
[11] A. D. Sukhanov, EChAYa, 36:6 (2005), 1281–1342
[12] R. Feinman, Kharakter fizicheskikh zakonov, Nauka, M., 1987
[13] V. I. Arnold, Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1989 | MR | MR | Zbl
[14] B. A. Dubrovin, S. P. Novikov, A. T. Fomenko, Sovremennaya geometriya. Metody i prilozheniya, v. 2, Geometriya i topologiya mnogoobrazii, Editorial URSS, M., 1986 | MR | MR | Zbl
[15] I. V. Volovich, Number theory as the ultimate physical theory, Preprint No. TH 4781/87, CERN, Geneva, 1987 ; p-Adic Numbers Ultrametric Anal. Appl., 2:1 (2010), 77–87 | MR | DOI | Zbl
[16] I. V. Volovich, TMF, 71:3 (1987), 337–340 | DOI | MR | Zbl
[17] V. S. Vladimirov, I. V. Volovich, E. I. Zelenov, $p$-Adicheskii analiz i matematicheskaya fizika, Nauka, M., 1994 | MR | MR | Zbl
[18] B. Dragovich, A. Yu. Khrennikov, S. V. Kozyrev, I. V. Volovich, P-Adic Numbers, Ultrametric Anal. Appl., 1:1 (2009), 1–17, arXiv: 0904.4205 | DOI | MR | Zbl
[19] I. V. Volovich, Vestn. SamGU, 8/1:67 (2008), 35–55
[20] I. V. Volovich, Time irreversibility problem and functional formulation of classical mechanics, arXiv: 0907.2445
[21] I. V. Volovich, “Randomness in classical mechanics and quantum mechanics”, Found. Phys., 2010, (in press) | DOI | MR
[22] A. S. Trushechkin, I. V. Volovich, P-Adic Numbers Ultrametric Anal. Appl., 1:4 (2009), 361–367, arXiv: 0910.1502 | DOI | MR | Zbl
[23] A. S. Trushechkin, TMF, 164:3 (2010), 435–440 | DOI | Zbl
[24] N. N. Bogolyubov, N. M. Krylov, “Naslidki dii statistichnoi zmini parametriv na rukh dinamichnikh konservativnikh sistem protyagom dosit trivalikh peridiv chasu”, Zb. prats z neliniinoi mekhaniki, Vid-vo AN URSR, Kiiv, 1937, 119–135; Н. Н. Боголюбов, Математика и нелинейная механика, Собр. научных трудов, т. II, Нелинейная механика, ред. Ю. А. Митропольский, А. Д. Суханов, Наука, М., 2005, 730–736 | MR | Zbl
[25] M. Born, Z. f. Phys., 153:3 (1958), 372–388 | DOI | MR | Zbl
[26] B. O. Koopman, Proc. Natl. Acad. Sci. USA, 17:5 (1931), 315–318 | DOI | Zbl
[27] L. D. Faddeev, O. A. Yakubovskii, Lektsii po kvantovoi mekhanike dlya studentov matematikov, LGU, L., 1980 | MR | Zbl
[28] V. S. Vladimirov, Uravneniya matematicheskoi fiziki, Nauka, M., 1988 | MR | MR | Zbl
[29] L. Accardi, Y. G. Lu, I. V. Volovich, Quantum Theory and its Stochastic Limit, Texts Monogr. Phys., Springer, Berlin, 2002 | MR | Zbl
[30] Yu. V. Prokhorov, Yu. A. Rozanov, Teoriya veroyatnostei, Nauka, M., 1987 | MR | Zbl
[31] J. D. Anderson, J. K. Campbell, J. E. Ekelund, J. Ellis, J. F. Jordan, Phys. Rev. Lett., 100:9 (2008), 091102, 4 pp. | DOI