Bogoliubov equations and functional mechanics
Teoretičeskaâ i matematičeskaâ fizika, Tome 164 (2010) no. 3, pp. 354-362 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The functional classical mechanics based on the probability approach, where a particle is described not by a trajectory in the phase space but by a probability distribution, was recently proposed for solving the irreversibility problem, i.e., the problem of matching the time reversibility of microscopic dynamics equations and the irreversibility of macrosystem dynamics. In the framework of functional mechanics, we derive Bogoliubov–Boltzmann-type equations for finitely many particles. We show that a closed equation for a one-particle distribution function can be rigorously derived in functional mechanics without any additional assumptions required in the Bogoliubov method. We consider the possibility of using diffusion processes and the Fokker–Planck–Kolmogorov equation to describe isolated particles.
Keywords: Boltzmann equation, Bogoliubov equation, kinetic theory.
@article{TMF_2010_164_3_a2,
     author = {I. V. Volovich},
     title = {Bogoliubov equations and functional mechanics},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {354--362},
     year = {2010},
     volume = {164},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2010_164_3_a2/}
}
TY  - JOUR
AU  - I. V. Volovich
TI  - Bogoliubov equations and functional mechanics
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2010
SP  - 354
EP  - 362
VL  - 164
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2010_164_3_a2/
LA  - ru
ID  - TMF_2010_164_3_a2
ER  - 
%0 Journal Article
%A I. V. Volovich
%T Bogoliubov equations and functional mechanics
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2010
%P 354-362
%V 164
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2010_164_3_a2/
%G ru
%F TMF_2010_164_3_a2
I. V. Volovich. Bogoliubov equations and functional mechanics. Teoretičeskaâ i matematičeskaâ fizika, Tome 164 (2010) no. 3, pp. 354-362. http://geodesic.mathdoc.fr/item/TMF_2010_164_3_a2/

[1] N. N. Bogolyubov, Problemy dinamicheskoi teorii v statisticheskoi fizike, Gostekhizdat, M., L., 1946 | MR | MR | Zbl

[2] L. Boltsman, Lektsii po teorii gazov, Gostekhizdat, M., 1953 | MR | Zbl

[3] A. Puankare, “Mekhanitsizm i opyt”: L. Boltsman, Izbrannye trudy, Nauka, M., 1984, 434–437 | MR

[4] A. Kolmogoroff, Math. Ann., 113:1 (1937), 766–772 | DOI | MR | Zbl

[5] L. D. Landau, E. M. Lifshits, Teoreticheskaya fizika, v. 5, Statisticheskaya fizika. Ch. 1. Teoriya ravnovesnykh sistem, Nauka, M., 1964 | MR | MR | Zbl

[6] D. N. Zubarev, Neravnovesnaya statisticheskaya termodinamika, Fizmatlit, M., 1971 | MR

[7] I. Prigogine, Les Lois du Chaos, Flammarion, Paris, 1993 | MR

[8] V. V. Kozlov, Teplovoe ravnovesie po Gibbsu i Puankare, Sovremennaya matematika, RKhD, M., Izhevsk, 2002 | MR | Zbl

[9] V. V. Kozlov, Ansambli Gibbsa i neravnovesnaya statisticheskaya mekhanika, NITs “Regulyarnaya i khaoticheskaya dinamika”, M.–Izhevsk, 2008

[10] V. L. Ginzburg, “Kakie problemy fiziki i astrofiziki predstavlyayutsya osobenno vazhnymi i interesnymi v nachale XXI veka?”, O nauke, o sebe i o drugikh, Fizmatlit, M., 2003, 11–74 | MR | Zbl

[11] A. D. Sukhanov, EChAYa, 36:6 (2005), 1281–1342

[12] R. Feinman, Kharakter fizicheskikh zakonov, Nauka, M., 1987

[13] V. I. Arnold, Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1989 | MR | MR | Zbl

[14] B. A. Dubrovin, S. P. Novikov, A. T. Fomenko, Sovremennaya geometriya. Metody i prilozheniya, v. 2, Geometriya i topologiya mnogoobrazii, Editorial URSS, M., 1986 | MR | MR | Zbl

[15] I. V. Volovich, Number theory as the ultimate physical theory, Preprint No. TH 4781/87, CERN, Geneva, 1987 ; p-Adic Numbers Ultrametric Anal. Appl., 2:1 (2010), 77–87 | MR | DOI | Zbl

[16] I. V. Volovich, TMF, 71:3 (1987), 337–340 | DOI | MR | Zbl

[17] V. S. Vladimirov, I. V. Volovich, E. I. Zelenov, $p$-Adicheskii analiz i matematicheskaya fizika, Nauka, M., 1994 | MR | MR | Zbl

[18] B. Dragovich, A. Yu. Khrennikov, S. V. Kozyrev, I. V. Volovich, P-Adic Numbers, Ultrametric Anal. Appl., 1:1 (2009), 1–17, arXiv: 0904.4205 | DOI | MR | Zbl

[19] I. V. Volovich, Vestn. SamGU, 8/1:67 (2008), 35–55

[20] I. V. Volovich, Time irreversibility problem and functional formulation of classical mechanics, arXiv: 0907.2445

[21] I. V. Volovich, “Randomness in classical mechanics and quantum mechanics”, Found. Phys., 2010, (in press) | DOI | MR

[22] A. S. Trushechkin, I. V. Volovich, P-Adic Numbers Ultrametric Anal. Appl., 1:4 (2009), 361–367, arXiv: 0910.1502 | DOI | MR | Zbl

[23] A. S. Trushechkin, TMF, 164:3 (2010), 435–440 | DOI | Zbl

[24] N. N. Bogolyubov, N. M. Krylov, “Naslidki dii statistichnoi zmini parametriv na rukh dinamichnikh konservativnikh sistem protyagom dosit trivalikh peridiv chasu”, Zb. prats z neliniinoi mekhaniki, Vid-vo AN URSR, Kiiv, 1937, 119–135; Н. Н. Боголюбов, Математика и нелинейная механика, Собр. научных трудов, т. II, Нелинейная механика, ред. Ю. А. Митропольский, А. Д. Суханов, Наука, М., 2005, 730–736 | MR | Zbl

[25] M. Born, Z. f. Phys., 153:3 (1958), 372–388 | DOI | MR | Zbl

[26] B. O. Koopman, Proc. Natl. Acad. Sci. USA, 17:5 (1931), 315–318 | DOI | Zbl

[27] L. D. Faddeev, O. A. Yakubovskii, Lektsii po kvantovoi mekhanike dlya studentov matematikov, LGU, L., 1980 | MR | Zbl

[28] V. S. Vladimirov, Uravneniya matematicheskoi fiziki, Nauka, M., 1988 | MR | MR | Zbl

[29] L. Accardi, Y. G. Lu, I. V. Volovich, Quantum Theory and its Stochastic Limit, Texts Monogr. Phys., Springer, Berlin, 2002 | MR | Zbl

[30] Yu. V. Prokhorov, Yu. A. Rozanov, Teoriya veroyatnostei, Nauka, M., 1987 | MR | Zbl

[31] J. D. Anderson, J. K. Campbell, J. E. Ekelund, J. Ellis, J. F. Jordan, Phys. Rev. Lett., 100:9 (2008), 091102, 4 pp. | DOI