Bogoliubov equations and functional mechanics
Teoretičeskaâ i matematičeskaâ fizika, Tome 164 (2010) no. 3, pp. 354-362

Voir la notice de l'article provenant de la source Math-Net.Ru

The functional classical mechanics based on the probability approach, where a particle is described not by a trajectory in the phase space but by a probability distribution, was recently proposed for solving the irreversibility problem, i.e., the problem of matching the time reversibility of microscopic dynamics equations and the irreversibility of macrosystem dynamics. In the framework of functional mechanics, we derive Bogoliubov–Boltzmann-type equations for finitely many particles. We show that a closed equation for a one-particle distribution function can be rigorously derived in functional mechanics without any additional assumptions required in the Bogoliubov method. We consider the possibility of using diffusion processes and the Fokker–Planck–Kolmogorov equation to describe isolated particles.
Keywords: Boltzmann equation, Bogoliubov equation, kinetic theory.
@article{TMF_2010_164_3_a2,
     author = {I. V. Volovich},
     title = {Bogoliubov equations and functional mechanics},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {354--362},
     publisher = {mathdoc},
     volume = {164},
     number = {3},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2010_164_3_a2/}
}
TY  - JOUR
AU  - I. V. Volovich
TI  - Bogoliubov equations and functional mechanics
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2010
SP  - 354
EP  - 362
VL  - 164
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2010_164_3_a2/
LA  - ru
ID  - TMF_2010_164_3_a2
ER  - 
%0 Journal Article
%A I. V. Volovich
%T Bogoliubov equations and functional mechanics
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2010
%P 354-362
%V 164
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2010_164_3_a2/
%G ru
%F TMF_2010_164_3_a2
I. V. Volovich. Bogoliubov equations and functional mechanics. Teoretičeskaâ i matematičeskaâ fizika, Tome 164 (2010) no. 3, pp. 354-362. http://geodesic.mathdoc.fr/item/TMF_2010_164_3_a2/