Group averaging for de Sitter free fields in terms of hyperspherical functions
Teoretičeskaâ i matematičeskaâ fizika, Tome 164 (2010) no. 3, pp. 473-480 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the convergence of inner products of free fields over the homogeneous spaces of the de Sitter group and show that the convergence of inner products in the case of $N$-particle states is defined by the asymptotic behavior of hypergeometric functions. We calculate the inner product for two-particle states on the four-dimensional hyperboloid in detail.
Keywords: de Sitter group, group averaging, inner product, hyperspherical function, homogeneous space.
@article{TMF_2010_164_3_a17,
     author = {V. V. Varlamov},
     title = {Group averaging for {de~Sitter} free fields in terms of hyperspherical functions},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {473--480},
     year = {2010},
     volume = {164},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2010_164_3_a17/}
}
TY  - JOUR
AU  - V. V. Varlamov
TI  - Group averaging for de Sitter free fields in terms of hyperspherical functions
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2010
SP  - 473
EP  - 480
VL  - 164
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2010_164_3_a17/
LA  - ru
ID  - TMF_2010_164_3_a17
ER  - 
%0 Journal Article
%A V. V. Varlamov
%T Group averaging for de Sitter free fields in terms of hyperspherical functions
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2010
%P 473-480
%V 164
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2010_164_3_a17/
%G ru
%F TMF_2010_164_3_a17
V. V. Varlamov. Group averaging for de Sitter free fields in terms of hyperspherical functions. Teoretičeskaâ i matematičeskaâ fizika, Tome 164 (2010) no. 3, pp. 473-480. http://geodesic.mathdoc.fr/item/TMF_2010_164_3_a17/

[1] P. A. M. Dirak, Printsipy kvantovoi mekhaniki, Fizmatgiz, M., 1960 | MR | MR | Zbl

[2] M. Henneaux, C. Teitelboim, Quantization of Gauge Systems, Princeton Univ. Press, Princeton, 1992 | MR | Zbl

[3] N. Woodhouse, Geometric Quantization, Oxford Math. Monogr., Clarendon Press; Oxford Univ. Press, New York, 1980 | MR | Zbl

[4] J. R. Klauder, “Product representations and the quantization of constrained systems”, Matematicheskaya fizika. Problemy kvantovoi teorii polya, Sb. statei. K 65-letiyu so dnya rozhdeniya akademika L. D. Faddeeva, Tr. MIAN, 226, eds. A. A. Slavnov, E. F. Mischenko, Nauka, M., 1999, 212–222, arXiv: quant-ph/9811051 | MR | Zbl

[5] H. B. G. S. Grundling, C. A. Hurst, Comm. Math. Phys., 98:3 (1985), 369–390 | DOI | MR | Zbl

[6] A. Ashtekar, Lectures on Non-perturbative Canonical Gravity, Adv. Ser. Astrophys. Cosmol., 6, World Sci., River Edge, NJ, 1991 | DOI | MR | Zbl

[7] A. Ashtekar, J. Lewandowski, D. Marolf, J. Mourão, T. Thiemann, J. Math. Phys., 36:11 (1995), 6456–6493 | DOI | MR | Zbl

[8] D. Marolf, “Refined algebraic quantization: systems with a single constraint”, Symplectic Singularities and Geometry of Gauge Fields, Banach Center Publ., 39, Polish Acad. Sci., Warsaw, 1997, 331–344, arXiv: gr-qc/9508015 | MR | Zbl

[9] N. P. Landsman, J. Geom. Phys., 15:4 (1995), 285–319 | DOI | MR | Zbl

[10] M. A. Rieffel, Adv. Math., 13:2 (1974), 176–257 | DOI | MR | Zbl

[11] D. Marolf, Class. Quant. Grav., 12:5 (1995), 1199–1220, arXiv: gr-qc/9404053 | DOI | MR | Zbl

[12] A. Higuchi, Class. Quant. Grav., 8:11 (1991), 1983–2004 | DOI | MR

[13] D. Giulini, D. Marolf, Class. Quant. Grav., 16:7 (1999), 2489–2505, arXiv: gr-qc/9902045 | DOI | MR | Zbl

[14] D. Marolf, I. A. Morrison, Class. Quant. Grav., 26:23 (2009), 235003, 28 pp., arXiv: 0810.5163 | DOI | MR | Zbl

[15] O. Yu. Shvedov, Ann. Phys., 302:1 (2002), 2–21, arXiv: hep-th/0111270 | DOI | MR | Zbl

[16] V. V. Varlamov, J. Phys. A, 40:1 (2007), 163–201, arXiv: math-ph/0604026 | DOI | MR | Zbl

[17] V. V. Varlamov, J. Phys. A, 37:20 (2004), 5467–5476, arXiv: math-ph/0308038 | DOI | MR | Zbl

[18] V. V. Varlamov, J. Phys. A, 39:4 (2006), 805–822, arXiv: math-ph/0507056 | DOI | MR | Zbl

[19] V. V. Varlamov, Internat. J. Modern Phys. A, 20:17 (2005), 4095–4112, arXiv: math-ph/0310051 | DOI | MR | Zbl

[20] A. P. Prudnikov, Yu. A. Brychkov, O. I. Marichev, Integraly i ryady. Dopolnitelnye glavy, Nauka, M., 1981 | MR | MR | Zbl

[21] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii, v. 1, Gipergeometricheskaya funktsiya. Funktsii Lezhandra, Nauka, M., 1965 | MR | MR | Zbl