Spectrum of the energy operator of two-magnon systems in the isotropic Heisenberg ferromagnet model with impurity
Teoretičeskaâ i matematičeskaâ fizika, Tome 164 (2010) no. 3, pp. 464-472 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a two-magnon system in the isotropic Heisenberg ferromagnet model with impurity on a $\nu$-dimensional lattice $\mathbb Z^{\nu}$. We establish that the essential spectrum of the system consists of the union of at most four intervals. We obtain the lower and upper estimates for the number of three-particle bound states of the system.
Keywords: essential spectrum, discrete spectrum, local impurity state, bound state, Heisenberg model, two-magnon system in the impurity model.
@article{TMF_2010_164_3_a16,
     author = {S. M. Tashpulatov},
     title = {Spectrum of the~energy operator of two-magnon systems in the~isotropic {Heisenberg} ferromagnet model with impurity},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {464--472},
     year = {2010},
     volume = {164},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2010_164_3_a16/}
}
TY  - JOUR
AU  - S. M. Tashpulatov
TI  - Spectrum of the energy operator of two-magnon systems in the isotropic Heisenberg ferromagnet model with impurity
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2010
SP  - 464
EP  - 472
VL  - 164
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2010_164_3_a16/
LA  - ru
ID  - TMF_2010_164_3_a16
ER  - 
%0 Journal Article
%A S. M. Tashpulatov
%T Spectrum of the energy operator of two-magnon systems in the isotropic Heisenberg ferromagnet model with impurity
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2010
%P 464-472
%V 164
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2010_164_3_a16/
%G ru
%F TMF_2010_164_3_a16
S. M. Tashpulatov. Spectrum of the energy operator of two-magnon systems in the isotropic Heisenberg ferromagnet model with impurity. Teoretičeskaâ i matematičeskaâ fizika, Tome 164 (2010) no. 3, pp. 464-472. http://geodesic.mathdoc.fr/item/TMF_2010_164_3_a16/

[1] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki, v. 3, Mir, M., 1982 | MR | MR | Zbl

[2] S. M. Tashpulatov, TMF, 126:3 (2001), 482–488 | DOI | MR | Zbl

[3] M. A. Naimark, Normirovannye koltsa, Nauka, M., 1968 | MR | MR | Zbl

[4] M. Wortis, Phys. Rev., 132:1 (1963), 85–97 | DOI | MR

[5] S. M. Tashpulatov, TMF, 107:1 (1996), 155–161 | DOI | MR | Zbl

[6] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki, v. 1, Funktsionalnyi analiz, Mir, M., 1977 | MR | MR | Zbl

[7] T. Ichinose, Trans. Amer. Math. Soc., 235 (1978), 75–113 | DOI | MR | Zbl

[8] T. Ichinose, Trans. Amer. Math. Soc., 237 (1978), 223–254 | DOI | MR | Zbl

[9] T. Ichinose, “On the spectral properties of tensor products of linear operators in Banach spaces”, Spectral Theory, Banach Center Publ., 8, eds. W. Żelazko, PWN, Warsaw, 1982, 294–300 | MR | Zbl

[10] S. M. Tashpulatov, TMF, 162:2 (2010), 227–242 | DOI | MR | Zbl