Averaging of quantum dynamical semigroups
Teoretičeskaâ i matematičeskaâ fizika, Tome 164 (2010) no. 3, pp. 455-463 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the framework of the elliptic regularization method, the Cauchy problem for the Schrödinger equation with discontinuous degenerating coefficients is associated with a sequence of regularized Cauchy problems and the corresponding regularized dynamical semigroups. We study a divergent sequence of quantum dynamical semigroups as a random process with values in the space of quantum states defined on a measurable space of regularization parameters with a finitely additive measure. The mathematical expectation of the considered processes determined by the Pettis integral defines a family of averaged dynamical transformations. We investigate the semigroup property and the injectivity and surjectivity of the averaged transformations. We establish the possibility of defining the process by its mathematical expectation at two different instants and propose a procedure for approximating an unknown initial state by solutions of a finite set of variational problems on compact sets.
Keywords: stochastic process, finitely additive measure, quantum state, dynamical semigroup, observability.
@article{TMF_2010_164_3_a15,
     author = {V. Zh. Sakbaev},
     title = {Averaging of quantum dynamical semigroups},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {455--463},
     year = {2010},
     volume = {164},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2010_164_3_a15/}
}
TY  - JOUR
AU  - V. Zh. Sakbaev
TI  - Averaging of quantum dynamical semigroups
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2010
SP  - 455
EP  - 463
VL  - 164
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2010_164_3_a15/
LA  - ru
ID  - TMF_2010_164_3_a15
ER  - 
%0 Journal Article
%A V. Zh. Sakbaev
%T Averaging of quantum dynamical semigroups
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2010
%P 455-463
%V 164
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2010_164_3_a15/
%G ru
%F TMF_2010_164_3_a15
V. Zh. Sakbaev. Averaging of quantum dynamical semigroups. Teoretičeskaâ i matematičeskaâ fizika, Tome 164 (2010) no. 3, pp. 455-463. http://geodesic.mathdoc.fr/item/TMF_2010_164_3_a15/

[1] V. V. Kozlov, Teplovoe ravnovesie po Gibbsu i Puankare, Sovremennaya matematika, RKhD, M., Izhevsk, 2002 | MR | Zbl

[2] L. Accardi, Y. G. Lu, I. V. Volovich, Quantum Theory and its Stochastic Limit, Texts Monogr. Phys., Springer, Berlin, 2001 | MR | Zbl

[3] N. N. Bogolyubov, O nekotorykh statisticheskikh metodakh v matematicheskoi fizike, AN USSR, Kiev, 1945 | MR | Zbl

[4] N. N. Bogolyubov, “O nekotorykh ergodicheskikh svoistvakh nepreryvnykh grupp preobrazovanii”, Izbrannye trudy, v. I, Naukova dumka, Kiev, 1969, 561–569

[5] V. Zh. Sakbaev, Tr. MIAN, 261 (2008), 258–267 | DOI | MR | Zbl

[6] U. Bratteli, D. Robinson, Operatornye algebry i kvantovaya statisticheskaya mekhanika, Mir, M., 1982 | MR | MR | Zbl

[7] V. Zh. Sakbaev, Zh. vychisl. matem. i matem. fiz., 46:4 (2006), 683–699 | DOI | MR | Zbl

[8] V. S. Varadarain, Matem. sb., 55(97):1 (1961), 35–100 | MR | Zbl

[9] G. G. Amosov, V. Zh. Sakbaev, Trudy SamGU, 8:1(67) (2008), 479–494 | MR

[10] R. Edvards, Funktsionalnyi analiz, Mir, M., 1969 | MR | Zbl

[11] V. Zh. Sakbaev, Trudy MFTI, 1:4 (2009), 126–147