Space of $C^1$-smooth skew products of maps of an interval
Teoretičeskaâ i matematičeskaâ fizika, Tome 164 (2010) no. 3, pp. 447-454 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Using the notions of an $\Omega$-function and of functions suitable for an $\Omega$-function, we show that the space of $C^1$-smooth skew products of maps of an interval such that the quotient map of each is $\Omega$-stable in the space of $C^1$-smooth maps of a closed interval into itself and has a type $\succ2^{\infty}$ (i.e., contains a periodic orbit with the period not equal to a power of $2$) can be represented as a union of four nonempty pairwise nonintersecting subspaces. We give examples of maps belonging to each of the identified subspaces.
Keywords: skew product, $\Omega$-function, suitable function.
Mots-clés : quotient map
@article{TMF_2010_164_3_a14,
     author = {L. S. Efremova},
     title = {Space of $C^1$-smooth skew products of maps of an~interval},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {447--454},
     year = {2010},
     volume = {164},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2010_164_3_a14/}
}
TY  - JOUR
AU  - L. S. Efremova
TI  - Space of $C^1$-smooth skew products of maps of an interval
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2010
SP  - 447
EP  - 454
VL  - 164
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2010_164_3_a14/
LA  - ru
ID  - TMF_2010_164_3_a14
ER  - 
%0 Journal Article
%A L. S. Efremova
%T Space of $C^1$-smooth skew products of maps of an interval
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2010
%P 447-454
%V 164
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2010_164_3_a14/
%G ru
%F TMF_2010_164_3_a14
L. S. Efremova. Space of $C^1$-smooth skew products of maps of an interval. Teoretičeskaâ i matematičeskaâ fizika, Tome 164 (2010) no. 3, pp. 447-454. http://geodesic.mathdoc.fr/item/TMF_2010_164_3_a14/

[1] M. M. Krilov, M. M. Bogolyubov, Zapiski kafedri matematichnoi fiziki Institutu budivelnoi mekhaniki AN URSR, 3 (1937), 119–135

[2] H. Anzai, Osaka Math. J., 3:1 (1951), 83–99 | MR | Zbl

[3] D. V. Anosov, UMN, 49:5(299) (1994), 5–20 | DOI | MR | Zbl

[4] L. S. Efremova, “O ponyatii $\Omega$-funktsii kosogo proizvedeniya otobrazhenii intervala”, Trudy mezhdunarodnoi konferentsii, posvyaschennoi 90-letiyu L. S. Pontryagina, v. 6, Itogi nauki i tekhn. Ser. Sovrem. mat. i ee pril. Temat. obz., 67, Dinamicheskie sistemy, eds. S. M. Aseev, C. A. Vakhrameev, Z. A. Izmailova, VINITI, M., 1999, 129–160 | DOI | MR | Zbl

[5] L. S. Efremova, “O nebluzhdayuschem mnozhestve i tsentre treugolnykh otobrazhenii s zamknutym mnozhestvom periodicheskikh tochek v baze”, Dinamicheskie sistemy i nelineinye yavleniya, ed. A. N. Sharkovskii, In-t matem. AN Ukrainy, Kiev, 1990, 15–25 | MR

[6] L. S. Efremova, Izv. vuzov. Matem., 10 (2006), 19–28 | MR

[7] L. S. Efremova, Nonlinear Anal., 47:8 (2001), 5297–5308 | DOI | MR | Zbl

[8] L. S. Efremova, Trudy mezhdunarodnoi konferentsii “Progress v nelineinoi dinamike”, posvyaschennoi 100-letiyu A. A. Andronova, v. 1, Matematicheskie problemy nelineinoi dinamiki, eds. L. M. Lerman, L. P. Shilnikov, In-t prikladnoi fiziki RAN, Nizhegorodskii gos. un-t, N. Novgorod, 2002 | MR

[9] A. B. Katok, B. Khasselblat, Vvedenie v sovremennuyu teoriyu dinamicheskikh sistem, Faktorial, M., 1999 | MR | Zbl

[10] K. Kuratovskii, Topologiya, v. 1, 2, Mir, M., 1966 ; 1969 | MR | MR | MR | MR | MR | Zbl

[11] A. N. Sharkovskii, V. A. Dobrynskii, “Nebluzhdayuschie tochki dinamicheskikh sistem”, Dinamicheskie sistemy i voprosy ustoichivosti reshenii differentsialnykh uravnenii, In-t matem. AN Ukrainy, Kiev, 1973, 165–174 | MR

[12] T. H. Jäger, Ergodic Theory Dynam. Systems, 27:2 (2007), 493–510 | DOI | MR | Zbl

[13] D. V. Anosov, “Grubye sistemy”, Topologiya, obyknovennye differentsialnye uravneniya, dinamicheskie sistemy, Sbornik obzornykh statei. 2. K 50-letiyu instituta, Tr. MIAN, 169, 1985, 59–93 | MR | Zbl

[14] M. V. Yakobson, Matem. sb., 85(127):2(6) (1971), 163–188 | DOI | MR | Zbl

[15] L. S. Efremova, UMN, 40:1(241) (1985), 197–198 | DOI | MR | Zbl