Existence and uniqueness of classical solutions of the Cauchy problem on nonglobally hyperbolic manifolds
Teoretičeskaâ i matematičeskaâ fizika, Tome 164 (2010) no. 3, pp. 441-446 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the Cauchy problem for the wave equation on the Misner space, a nonglobally hyperbolic manifold with closed timelike lines. We prove that the existence and uniqueness of a classical solution are equivalent to self-consistency conditions much more rigorous than a finite collection of pointlike conditions occurring in this problem on the Minkowski plane with an attached handle.
Keywords: nonglobally hyperbolic manifold, wave equation, Cauchy problem.
@article{TMF_2010_164_3_a13,
     author = {O. V. Groshev},
     title = {Existence and uniqueness of classical solutions of {the~Cauchy} problem on nonglobally hyperbolic manifolds},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {441--446},
     year = {2010},
     volume = {164},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2010_164_3_a13/}
}
TY  - JOUR
AU  - O. V. Groshev
TI  - Existence and uniqueness of classical solutions of the Cauchy problem on nonglobally hyperbolic manifolds
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2010
SP  - 441
EP  - 446
VL  - 164
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2010_164_3_a13/
LA  - ru
ID  - TMF_2010_164_3_a13
ER  - 
%0 Journal Article
%A O. V. Groshev
%T Existence and uniqueness of classical solutions of the Cauchy problem on nonglobally hyperbolic manifolds
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2010
%P 441-446
%V 164
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2010_164_3_a13/
%G ru
%F TMF_2010_164_3_a13
O. V. Groshev. Existence and uniqueness of classical solutions of the Cauchy problem on nonglobally hyperbolic manifolds. Teoretičeskaâ i matematičeskaâ fizika, Tome 164 (2010) no. 3, pp. 441-446. http://geodesic.mathdoc.fr/item/TMF_2010_164_3_a13/

[1] I. Petrowsky, Matem. sb., 2(44):5 (1937), 815–870 | Zbl

[2] Zh. Lere, Giperbolicheskie differentsialnye uravneniya, Nauka, M., 1984 | MR | MR | Zbl

[3] A. N. Bernal, M. Sánchez, Comm. Math. Phys., 257:1 (2005), 43–50 | DOI | MR | Zbl

[4] S. Khoking, Dzh. Ellis, Krupnomasshtabnaya struktura prostranstva-vremeni, Mir, M., 1977 | MR | Zbl

[5] H. D. Politzer, Phys. Rev. D, 49:8 (1994), 3981–3989, arXiv: gr-qc/9310027 | DOI | MR

[6] J. R. Gott III, Phys. Rev. Lett., 66:9 (1991), 1126–1129 | DOI | MR | Zbl

[7] J. Friedman, M. S. Morris, I. D. Novikov, F. Echeverria, G. Klinkhammer, K. S. Thorne, U. Yurtsever, Phys. Rev. D, 42:6 (1990), 1915–1930 | DOI | MR

[8] I. Ya. Arefeva, I. V. Volovich, T. Ishivatari, TMF, 157:3 (2008), 334–344, arXiv: 0903.0567 | DOI | MR | Zbl

[9] J. L. Friedman, “The Cauchy problem on spacetimes that are not globally hyperbolic”, The Einstein Equations and the Large Scale Behavior of Gravitational Fields, eds. P. T. Chruściel, H. Friedrich, Birkhäuser, Basel, 2004, 331–346, arXiv: gr-qc/0401004 | DOI | MR | Zbl

[10] J. L. Friedman, M. S. Morris, Comm. Math. Phys., 186:3 (1997), 495–529, arXiv: gr-qc/9411033 | DOI | MR | Zbl

[11] I. V. Volovich, O. V. Groshev, N. A. Gusev, E. A. Kuryanovich, “O resheniyakh volnovogo uravneniya na neglobalno giperbolicheskom mnogoobrazii”, Izbrannye voprosy matematicheskoi fiziki i $p$-adicheskogo analiza, Sb. statei, Tr. MIAN, 265, eds. I. V. Volovich, E. F. Mischenko, 2009, 273–287, arXiv: 0903.0741 | DOI | MR | Zbl

[12] A. Chamblin, G. W. Gibbons, A. R. Steif, Phys. Rev. D, 50:4 (1994), R2353–R2355, arXiv: gr-qc/9405001 | DOI | MR

[13] U. Yurtsever, Gen. Rel. Grav., 27:6 (1995), 691–693, arXiv: gr-qc/9409040 | DOI | MR | Zbl

[14] I. Ya. Aref'eva, I. V. Volovich, Int. J. Geom. Methods Mod. Phys., 5:4 (2008), 641–651, arXiv: 0710.2696 | DOI | MR | Zbl