A~special set of eigenvectors for the~hyperbolic Sutherland systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 164 (2010) no. 3, pp. 419-425

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct the integrals of motion for Sutherland hyperbolic quantum systems of particles with internal degrees of freedom ($su(n)$ spins) interacting with an external field of the Morse potential of an arbitrary strength $\tau^2$. These systems are confined if certain constraints are imposed on $\tau$, the pair coupling constant $\lambda$, and the number of particles. The ground state is described by a wave function of the Jastrow form.
Keywords: spin system, Morse potential, spinless Sutherland system, integrability.
@article{TMF_2010_164_3_a10,
     author = {B. I. Sadovnikov and N. G. Inozemtseva and V. I. Inozemtsev},
     title = {A~special set of eigenvectors for the~hyperbolic {Sutherland} systems},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {419--425},
     publisher = {mathdoc},
     volume = {164},
     number = {3},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2010_164_3_a10/}
}
TY  - JOUR
AU  - B. I. Sadovnikov
AU  - N. G. Inozemtseva
AU  - V. I. Inozemtsev
TI  - A~special set of eigenvectors for the~hyperbolic Sutherland systems
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2010
SP  - 419
EP  - 425
VL  - 164
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2010_164_3_a10/
LA  - ru
ID  - TMF_2010_164_3_a10
ER  - 
%0 Journal Article
%A B. I. Sadovnikov
%A N. G. Inozemtseva
%A V. I. Inozemtsev
%T A~special set of eigenvectors for the~hyperbolic Sutherland systems
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2010
%P 419-425
%V 164
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2010_164_3_a10/
%G ru
%F TMF_2010_164_3_a10
B. I. Sadovnikov; N. G. Inozemtseva; V. I. Inozemtsev. A~special set of eigenvectors for the~hyperbolic Sutherland systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 164 (2010) no. 3, pp. 419-425. http://geodesic.mathdoc.fr/item/TMF_2010_164_3_a10/