Mots-clés : nonzero magnetic flux
@article{TMF_2010_164_3_a1,
author = {P. G. Grinevich and A. E. Mironov and S. P. Novikov},
title = {Zero level of a~purely magnetic two-dimensional nonrelativistic {Pauli} operator for spin-$1/2$ particles},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {333--353},
year = {2010},
volume = {164},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2010_164_3_a1/}
}
TY - JOUR AU - P. G. Grinevich AU - A. E. Mironov AU - S. P. Novikov TI - Zero level of a purely magnetic two-dimensional nonrelativistic Pauli operator for spin-$1/2$ particles JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2010 SP - 333 EP - 353 VL - 164 IS - 3 UR - http://geodesic.mathdoc.fr/item/TMF_2010_164_3_a1/ LA - ru ID - TMF_2010_164_3_a1 ER -
%0 Journal Article %A P. G. Grinevich %A A. E. Mironov %A S. P. Novikov %T Zero level of a purely magnetic two-dimensional nonrelativistic Pauli operator for spin-$1/2$ particles %J Teoretičeskaâ i matematičeskaâ fizika %D 2010 %P 333-353 %V 164 %N 3 %U http://geodesic.mathdoc.fr/item/TMF_2010_164_3_a1/ %G ru %F TMF_2010_164_3_a1
P. G. Grinevich; A. E. Mironov; S. P. Novikov. Zero level of a purely magnetic two-dimensional nonrelativistic Pauli operator for spin-$1/2$ particles. Teoretičeskaâ i matematičeskaâ fizika, Tome 164 (2010) no. 3, pp. 333-353. http://geodesic.mathdoc.fr/item/TMF_2010_164_3_a1/
[1] V. B. Berestetskii, E. M. Lifshits, L. P. Pitaevskii, Teoreticheskaya fizika, v. 4, Kvantovaya elektrodinamika, Nauka, M., 1980 | MR | Zbl
[2] Y. Aharonov, A. Casher, Phys. Rev. A, 19:6 (1979), 2461–2462 | DOI | MR
[3] B. A. Dubrovin, S. P. Novikov, ZhETF, 79:3 (1980), 1006–1016 | MR
[4] B. A. Dubrovin, S. P. Novikov, Dokl. AN SSSR, 253:6 (1980), 1293–1297 | MR | Zbl
[5] S. P. Novikov, A. P. Veselov, “Exactly solvable two-dimensional Schrödinger operators and Laplace transformations”, Solitons, Geometry and Topology: On the Crossroads, Amer. Math. Soc. Transl. Ser. 2, 179, ed. V. M. Buchstaber, S. P. Novikov, AMS, Providence, RI, 1997, 109–132, arXiv: math-ph/0003008 | MR | Zbl
[6] J. E. Avron, R. Seiler, Phys. Rev. Lett., 42:15 (1979), 931–934 | DOI
[7] P. Grinevich, A. Mironov, S. Novikov, New reductions and nonlinear systems for 2D Schrodinger operators, arXiv: 1001.4300
[8] S. V. Manakov, UMN, 31:5(191) (1976), 245–246 | MR | Zbl
[9] B. G. Konopelchenko, Inverse Problems, 4:1 (1988), 151–163 | DOI | MR | Zbl
[10] P. Grinevich, A. Mironov, S. Novikov, 2D Schrodinger operator, (2+1) systems and new reductions. The 2D Burgers hierarchy and inverse problem data, arXiv: 1005.0612 | MR
[11] B. A. Dubrovin, I. M. Krichever, S. P. Novikov, Dokl. AN SSSR, 229:1 (1976), 15–18 | MR | Zbl
[12] B. A. Dubrovin, UMN, 36:2(218) (1981), 11–80 | DOI | MR | Zbl
[13] B. A. Dubrovin, V. B. Matveev, S. P. Novikov, UMN, 31:1(187) (1976), 55–136 | DOI | MR | Zbl
[14] A. P. Veselov, S. P. Novikov, Dokl. AN SSSR, 270:1 (1984), 20–24 | MR
[15] A. P. Veselov, S. P. Novikov, Dokl. AN SSSR, 279:4 (1984), 784–788 | MR | Zbl
[16] I. V. Cherednik, Dokl. AN SSSR, 252:5 (1980), 1104–1108 | MR | Zbl
[17] S. P. Novikov, Dokl. AN SSSR, 257:3 (1981), 538–543 | MR | Zbl
[18] S. P. Novikov, “Dvumernye operatory Shredingera v periodicheskikh polyakh”, Itogi nauki i tekhn. Ser. Sovrem. probl. mat., 23, VINITI, M., 1983, 3–32 | DOI | MR | Zbl
[19] A. S. Lyskova, UMN, 36:2(218) (1981), 189–190 | DOI | MR
[20] A. S. Lyskova, UMN, 36:5(221) (1981), 181–182 | DOI | MR
[21] J. Zak, Phys. Rev. A, 134:6 (1964), A1602–A1606 | DOI | MR