Zero level of a purely magnetic two-dimensional nonrelativistic Pauli operator for spin-$1/2$ particles
Teoretičeskaâ i matematičeskaâ fizika, Tome 164 (2010) no. 3, pp. 333-353 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the manifold of complex Bloch–Floquet eigenfunctions for the zero level of a two-dimensional nonrelativistic Pauli operator describing the propagation of a charged particle in a periodic magnetic field with zero flux through the elementary cell and a zero electric field. We study this manifold in full detail for a wide class of algebraic-geometric operators. In the nonzero flux case, the Pauli operator ground state was found by Aharonov and Casher for fields rapidly decreasing at infinity and by Dubrovin and Novikov for periodic fields. Algebraic-geometric operators were not previously known for fields with nonzero flux because the complex continuation of “magnetic” Bloch–Floquet eigenfunctions behaves wildly at infinity. We construct several nonsingular algebraic-geometric periodic fields (with zero flux through the elementary cell) corresponding to complex Riemann surfaces of genus zero. For higher genera, we construct periodic operators with interesting magnetic fields and with the Aharonov–Bohm phenomenon. Algebraic-geometric solutions of genus zero also generate soliton-like nonsingular magnetic fields whose flux through a disc of radius $R$ is proportional to $R$ (and diverges slowly as $R\to\infty$). In this case, we find the most interesting ground states in the Hilbert space $L_2(\mathbb R^2)$.
Keywords: two-dimensional Pauli operator, one-energy problem, algebraic-geometric solution, ground state, Bloch–Floquet manifold, Aharonov–Bohm effect.
Mots-clés : nonzero magnetic flux
@article{TMF_2010_164_3_a1,
     author = {P. G. Grinevich and A. E. Mironov and S. P. Novikov},
     title = {Zero level of a~purely magnetic two-dimensional nonrelativistic {Pauli} operator for spin-$1/2$ particles},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {333--353},
     year = {2010},
     volume = {164},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2010_164_3_a1/}
}
TY  - JOUR
AU  - P. G. Grinevich
AU  - A. E. Mironov
AU  - S. P. Novikov
TI  - Zero level of a purely magnetic two-dimensional nonrelativistic Pauli operator for spin-$1/2$ particles
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2010
SP  - 333
EP  - 353
VL  - 164
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2010_164_3_a1/
LA  - ru
ID  - TMF_2010_164_3_a1
ER  - 
%0 Journal Article
%A P. G. Grinevich
%A A. E. Mironov
%A S. P. Novikov
%T Zero level of a purely magnetic two-dimensional nonrelativistic Pauli operator for spin-$1/2$ particles
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2010
%P 333-353
%V 164
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2010_164_3_a1/
%G ru
%F TMF_2010_164_3_a1
P. G. Grinevich; A. E. Mironov; S. P. Novikov. Zero level of a purely magnetic two-dimensional nonrelativistic Pauli operator for spin-$1/2$ particles. Teoretičeskaâ i matematičeskaâ fizika, Tome 164 (2010) no. 3, pp. 333-353. http://geodesic.mathdoc.fr/item/TMF_2010_164_3_a1/

[1] V. B. Berestetskii, E. M. Lifshits, L. P. Pitaevskii, Teoreticheskaya fizika, v. 4, Kvantovaya elektrodinamika, Nauka, M., 1980 | MR | Zbl

[2] Y. Aharonov, A. Casher, Phys. Rev. A, 19:6 (1979), 2461–2462 | DOI | MR

[3] B. A. Dubrovin, S. P. Novikov, ZhETF, 79:3 (1980), 1006–1016 | MR

[4] B. A. Dubrovin, S. P. Novikov, Dokl. AN SSSR, 253:6 (1980), 1293–1297 | MR | Zbl

[5] S. P. Novikov, A. P. Veselov, “Exactly solvable two-dimensional Schrödinger operators and Laplace transformations”, Solitons, Geometry and Topology: On the Crossroads, Amer. Math. Soc. Transl. Ser. 2, 179, ed. V. M. Buchstaber, S. P. Novikov, AMS, Providence, RI, 1997, 109–132, arXiv: math-ph/0003008 | MR | Zbl

[6] J. E. Avron, R. Seiler, Phys. Rev. Lett., 42:15 (1979), 931–934 | DOI

[7] P. Grinevich, A. Mironov, S. Novikov, New reductions and nonlinear systems for 2D Schrodinger operators, arXiv: 1001.4300

[8] S. V. Manakov, UMN, 31:5(191) (1976), 245–246 | MR | Zbl

[9] B. G. Konopelchenko, Inverse Problems, 4:1 (1988), 151–163 | DOI | MR | Zbl

[10] P. Grinevich, A. Mironov, S. Novikov, 2D Schrodinger operator, (2+1) systems and new reductions. The 2D Burgers hierarchy and inverse problem data, arXiv: 1005.0612 | MR

[11] B. A. Dubrovin, I. M. Krichever, S. P. Novikov, Dokl. AN SSSR, 229:1 (1976), 15–18 | MR | Zbl

[12] B. A. Dubrovin, UMN, 36:2(218) (1981), 11–80 | DOI | MR | Zbl

[13] B. A. Dubrovin, V. B. Matveev, S. P. Novikov, UMN, 31:1(187) (1976), 55–136 | DOI | MR | Zbl

[14] A. P. Veselov, S. P. Novikov, Dokl. AN SSSR, 270:1 (1984), 20–24 | MR

[15] A. P. Veselov, S. P. Novikov, Dokl. AN SSSR, 279:4 (1984), 784–788 | MR | Zbl

[16] I. V. Cherednik, Dokl. AN SSSR, 252:5 (1980), 1104–1108 | MR | Zbl

[17] S. P. Novikov, Dokl. AN SSSR, 257:3 (1981), 538–543 | MR | Zbl

[18] S. P. Novikov, “Dvumernye operatory Shredingera v periodicheskikh polyakh”, Itogi nauki i tekhn. Ser. Sovrem. probl. mat., 23, VINITI, M., 1983, 3–32 | DOI | MR | Zbl

[19] A. S. Lyskova, UMN, 36:2(218) (1981), 189–190 | DOI | MR

[20] A. S. Lyskova, UMN, 36:5(221) (1981), 181–182 | DOI | MR

[21] J. Zak, Phys. Rev. A, 134:6 (1964), A1602–A1606 | DOI | MR