Regularized adelic formulas for string and superstring amplitudes in one-class quadratic fields
Teoretičeskaâ i matematičeskaâ fizika, Tome 164 (2010) no. 3, pp. 323-332 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We obtain regularized adelic formulas for gamma and beta functions for fields of rational numbers and the one-class quadratic fields and arbitrary quasicharacters (ramified or not). We consider applications to four-tachyon tree string amplitudes, generalized Veneziano amplitudes (open string), perturbed Virasoro amplitudes (closed string), massless four-particle tree open and closed superstring amplitudes, Ramond–Neveu–Schwarz superstring amplitudes, and charged heterotic superstring amplitudes. We establish certain relations between different string and superstring amplitudes.
Keywords: adele, field, string.
Mots-clés : idele
@article{TMF_2010_164_3_a0,
     author = {V. S. Vladimirov},
     title = {Regularized adelic formulas for string and superstring amplitudes in one-class quadratic fields},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {323--332},
     year = {2010},
     volume = {164},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2010_164_3_a0/}
}
TY  - JOUR
AU  - V. S. Vladimirov
TI  - Regularized adelic formulas for string and superstring amplitudes in one-class quadratic fields
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2010
SP  - 323
EP  - 332
VL  - 164
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2010_164_3_a0/
LA  - ru
ID  - TMF_2010_164_3_a0
ER  - 
%0 Journal Article
%A V. S. Vladimirov
%T Regularized adelic formulas for string and superstring amplitudes in one-class quadratic fields
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2010
%P 323-332
%V 164
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2010_164_3_a0/
%G ru
%F TMF_2010_164_3_a0
V. S. Vladimirov. Regularized adelic formulas for string and superstring amplitudes in one-class quadratic fields. Teoretičeskaâ i matematičeskaâ fizika, Tome 164 (2010) no. 3, pp. 323-332. http://geodesic.mathdoc.fr/item/TMF_2010_164_3_a0/

[1] P. G. O. Freund, E. Witten, Phys. Lett. B, 199:2 (1987), 191–194 | DOI | MR

[2] I. V. Volovich, Class. Quant. Grav., 4:4 (1987), L83–L87 | DOI | MR

[3] I. V. Volovich, Lett. Math. Phys., 16:1 (1988), 61–67 | DOI | MR | Zbl

[4] H. Kawai, D. C. Lewellen, S.-H. H. Tye, Nucl. Phys. B, 269:1 (1986), 1–23 | DOI | MR

[5] P. G. O. Freund, M. Olson, Phys. Lett. B, 199:2 (1987), 186–190 | DOI | MR

[6] P. H. Frampton, Y. Okada, M. R. Ubriaco, Phys. Lett. B, 213 (1988), 260–262 | DOI | MR

[7] I. Ya. Aref'eva, B. G. Dragović, I. V. Volovich, Phys. Lett. B, 209:4 (1988), 445–450 | DOI | MR

[8] I. Ya. Aref'eva, B. G. Dragovic, I. V. Volovich, Phys. Lett. B, 212:3 (1988), 283–291 | DOI | MR

[9] P. H. Frampton, H. Nishino, Phys. Rev. Lett., 62:17 (1989), 1960–1963 | DOI | MR

[10] Ph. Ruelle, E. Thiran, D. Verstegen, J. Weyers, Modern Phys. Lett. A, 4:18 (1989), 1745–1752 | DOI | MR

[11] L. Brekke, P. G. O. Freund, Phys. Rep., 233:1 (1993), 1–66 | DOI | MR

[12] B. C. Vladimirov, I. V. Volovich, E. I. Zelenov, $p$-Adicheskii analiz i matematicheskaya fizika, Nauka, M., 1994 | MR | MR | Zbl

[13] V. S. Vladimirov, Lett. Math. Phys., 27:2 (1993), 123–131 | DOI | MR | Zbl

[14] V. S. Vladimirov, “Adelic formulas for gamma- and beta-functions in algebraic number fields”, $p$-Adic Functional Analysis, Lect. Notes Pure Appl. Math., 192, eds. W. H. Schikhof, C. Perez-Garcia, J. Kakol, M. Dekker, New York, 1997, 383–395 | MR | Zbl

[15] V. S. Vladimirov, Izv. RAN. Ser. matem., 60:1 (1996), 63–86 | DOI | MR | Zbl

[16] V. S. Vladimirov, “Adelnye formuly dlya 4-chastichnykh drevesnykh strunnykh i superstrunnykh amplitud v odnoklassnykh kvadratichnykh polyakh”, Izbrannye voprosy $p$-adicheskoi matematicheskoi fiziki i analiza, Sbornik statei. K 80-letiyu so dnya rozhdeniya akademika Vasiliya Sergeevicha Vladimirova, v. 245, Tr. MIAN, Nauka, M., 2004, 9–28 | MR | Zbl

[17] V. S. Vladimirov, “O razvetvlennykh kharakterakh gruppy idelei odnoklassnykh kvadratichnykh polei”, Algebra. Topologiya. Differentsialnye uravneniya i ikh prilozheniya, Sbornik statei. K 90-letiyu so dnya rozhdeniya akademika Lva Semenovicha Pontryagina, Tr. MIAN, 224, Nauka, M., 1999, 122–129 | MR | Zbl

[18] V. S. Vladimirov, Izv. RAN. Ser. matem., 66:1 (2002), 43–58 | DOI | MR | Zbl

[19] M. Grin, Dzh. Shvarts, E. Vitten, Teoriya superstrun, v. 1, 2, Mir, M., 1990 | MR | MR | Zbl

[20] I. M. Gelfand, M. I. Graev, I. I. Pyatetskii-Shapiro, Teoriya predstavlenii i avtomorfnye funktsii, Nauka, M., 1966 | MR | MR | Zbl

[21] W. H. Schikhof, Ultrametric Calculus. An Introduction to $p$-Adic Analysis, Cambridge Stud. Adv. Math., 4, Cambridge Univ. Press, Cambridge, 1984 | MR | Zbl

[22] A. Veil, Osnovy teorii chisel, Mir, M., 1972 | MR | MR | Zbl

[23] Z. I. Borevich, I. R. Shafarevich, Teoriya chisel, Nauka, M., 1985 | MR | Zbl