Dynamical magnetic susceptibility of the periodic Anderson model in the chaotic phase approximation
Teoretičeskaâ i matematičeskaâ fizika, Tome 164 (2010) no. 2, pp. 309-320 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Using the diagram technique in the atomic representation in the generalized chaotic phase approximation, we solve the problem of calculating the dynamical magnetic susceptibility of the periodic Anderson model in the strong electron correlation regime. We express the dynamical magnetic susceptibility in terms of four Matsubara Green's functions describing partial contributions, which are calculated based on exact solutions of integral equations.
Keywords: periodic Anderson model, generalized chaotic phase approximation, dynamical magnetic susceptibility.
@article{TMF_2010_164_2_a9,
     author = {V. V. Val'kov and D. M. Dzebisashvili},
     title = {Dynamical magnetic susceptibility of the~periodic {Anderson} model in the~chaotic phase approximation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {309--320},
     year = {2010},
     volume = {164},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2010_164_2_a9/}
}
TY  - JOUR
AU  - V. V. Val'kov
AU  - D. M. Dzebisashvili
TI  - Dynamical magnetic susceptibility of the periodic Anderson model in the chaotic phase approximation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2010
SP  - 309
EP  - 320
VL  - 164
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2010_164_2_a9/
LA  - ru
ID  - TMF_2010_164_2_a9
ER  - 
%0 Journal Article
%A V. V. Val'kov
%A D. M. Dzebisashvili
%T Dynamical magnetic susceptibility of the periodic Anderson model in the chaotic phase approximation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2010
%P 309-320
%V 164
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2010_164_2_a9/
%G ru
%F TMF_2010_164_2_a9
V. V. Val'kov; D. M. Dzebisashvili. Dynamical magnetic susceptibility of the periodic Anderson model in the chaotic phase approximation. Teoretičeskaâ i matematičeskaâ fizika, Tome 164 (2010) no. 2, pp. 309-320. http://geodesic.mathdoc.fr/item/TMF_2010_164_2_a9/

[1] P. Schlottmann, Phys. Rev. B, 79:4 (2009), 045104, 6 pp. | DOI

[2] E. Abrahams, P. Wolfle, Phys. Rev. B, 78 (2008), 104423 | DOI

[3] V. V. Valkov, D. M. Dzebisashvili, ZhETF, 134:4 (2008), 791–805 | DOI

[4] Y. Yanase, T. Jujo, T. Nomura, H. Ikeda, T. Hotta, K. Yamada, Phys. Rep., 387:1–4 (2003), 1–149, arXiv: cond-mat/0309094 | DOI

[5] V. V. Moskalenko, TMF, 110:2 (1997), 308–322 | DOI | Zbl

[6] Yu. A. Izyumov, N. I. Chaschin, D. S. Alekseev, Teoriya silnokorrelirovannykh sistem. Metod proizvodyaschego funktsionala, RKhD, M., Izhevsk, 2006, 384 pp.

[7] V. V. Valkov, D. M. Dzebisashvili, Pisma v ZhETF, 84:4 (2006), 251–255 | DOI

[8] Yu. A. Izyumov, B. M. Letfulov, J. Phys.: Condens. Matter, 2:45 (1990), 8905–8923 | DOI

[9] Yu. A. Izyumov, B. M. Letfulov, E. V. Shipitsyn, M. Bartkowiak, K. A. Chao, Phys. Rev. B, 46:24 (1992), 15697–15711 | DOI

[10] S. V. Tyablikov, Metody kvantovoi teorii magnetizma, Nauka, M., 1975 | MR | MR

[11] D. A. Smith, J. Phys. C, 1:5 (1968), 1263–1278 | DOI

[12] P. W. Anderson, Phys. Rev., 124:1 (1961), 41–53 | DOI | MR

[13] A. F. Barabanov, K. A. Kikoin, L. A. Makcimov, TMF, 25:1 (1975), 87–96 | DOI

[14] A. A. Abrikosov, L. P. Gorkov, I. E. Dzyaloshinskii, Metody kvantovoi teorii polya v statisticheskoi fizike, Fizmatgiz, M., 1962, 444 pp. | MR | MR | Zbl

[15] R. O. Zaitsev, ZhETF, 68:1 (1975), 207–215

[16] R. O. Zaitsev, ZhETF, 70:3 (1976), 1100–1111

[17] Yu. A. Izyumov, M. I. Katsnelson, Yu. N. Skryabin, Magnetizm kollektivizirovannykh elektronov, Fizmatlit, M., 1994, 368 pp.