Semiclassical spectral series of the Schrödinger operator with a delta potential on a straight line and on a sphere
Teoretičeskaâ i matematičeskaâ fizika, Tome 164 (2010) no. 2, pp. 279-298 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We describe the spectral series of the Schrödinger operator $H=-(h^2/2) \Delta+V(x)+\alpha\delta(x-x_0)$, $\alpha\in\mathbb R$, with a delta potential on the real line and on the three- and two-dimensional standard spheres in the semiclassical limit as $h\to0$. We consider a smooth potential $V(x)$ such that $\lim_{|x|\to\infty}V(x)=+\infty$ in the first case and $V(x)=0$ in the last two cases. In the semiclassical limit in each case, we describe the classical trajectories corresponding to the quantum problem with a delta potential.
Keywords: semiclassical spectrum, Schrödinger operator, delta potential, Lagrangian manifold, Maslov canonical operator.
@article{TMF_2010_164_2_a7,
     author = {T. A. Filatova and A. I. Shafarevich},
     title = {Semiclassical spectral series of {the~Schr\"odinger} operator with a~delta~potential on a~straight line and on a~sphere},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {279--298},
     year = {2010},
     volume = {164},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2010_164_2_a7/}
}
TY  - JOUR
AU  - T. A. Filatova
AU  - A. I. Shafarevich
TI  - Semiclassical spectral series of the Schrödinger operator with a delta potential on a straight line and on a sphere
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2010
SP  - 279
EP  - 298
VL  - 164
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2010_164_2_a7/
LA  - ru
ID  - TMF_2010_164_2_a7
ER  - 
%0 Journal Article
%A T. A. Filatova
%A A. I. Shafarevich
%T Semiclassical spectral series of the Schrödinger operator with a delta potential on a straight line and on a sphere
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2010
%P 279-298
%V 164
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2010_164_2_a7/
%G ru
%F TMF_2010_164_2_a7
T. A. Filatova; A. I. Shafarevich. Semiclassical spectral series of the Schrödinger operator with a delta potential on a straight line and on a sphere. Teoretičeskaâ i matematičeskaâ fizika, Tome 164 (2010) no. 2, pp. 279-298. http://geodesic.mathdoc.fr/item/TMF_2010_164_2_a7/

[1] R. de L. Kronig, W. G. Penney, Proc. R. Soc. Lond. Ser. A, 130:814 (1931), 499–513 | DOI | Zbl

[2] H. Bethe, R. Peierls, Proc. R. Soc. Lond. Ser. A, 148 (1935), 146–156 | DOI | Zbl

[3] M. L. Goldberger, F. Seitz, Phys. Rev., 71:5 (1947), 294–310 | DOI | Zbl

[4] Ya. B. Zeldovich, FTT, 1 (1959), 1638–1645

[5] S. Fassari, G. Inglese, Helv. Phys. Acta, 67:6 (1994), 650–659 ; 69:2 (1996), 130–140 ; 70:6 (1997), 858–865 | MR | Zbl | MR | Zbl | MR | Zbl

[6] V. D. Krevchik, A. B. Grunin, A. K. Aringazin, M. B. Semenov, Hadronic J. Suppl., 18 (2003), 261–294

[7] Q.-Z. Peng, X.-D. Wang, J.-Y. Zeng, Sci. China Ser. A, 34:10 (1991), 1215–1221 | MR | Zbl

[8] V. D. Krevchik, R. V. Zaitsev, FTT, 43:3 (2001), 504–507 | DOI

[9] F. A. Berezin, L. D. Faddeev, DAN SSSR, 137 (1961), 1011–1014 | MR | Zbl

[10] S. Albeverio, F. Gesztesy, R. Høegh-Krohn, H. Holden, Solvable Models in Quantum Mechanics, AMS, Providence, RI, 2005 | MR | Zbl

[11] S. Albeverio, P. Kurasov, Singular Perturbations of Differential Operators, London Math. Soc. Lecture Note Ser., 271, Cambridge Univ. Press, Cambridge, 2000 | MR | Zbl

[12] J. Brüning, V. Geyler, J. Math. Phys., 44:2 (2003), 371–405, arXiv: math-ph/0205030 | DOI | MR | Zbl

[13] J. Brüning, V. Geyler, K. Pankrashkin, Rev. Math. Phys., 20:1 (2008), 1–70, arXiv: math-ph/0611088 | DOI | MR | Zbl

[14] I. Bryuning, V. A. Geiler, TMF, 119:3 (1999), 368–380 | DOI | MR | Zbl

[15] I. S. Lobanov, Spektralnye svoistva gamiltonianov yavnoreshaemykh modelei mezoskopicheskikh struktur: dekorirovannye grafy i kvantovye tochki, Dis. $\dots$ kand. fiz.-matem. nauk, Mordovskii gos. un-t im. N. P. Ogareva, Saransk, 2005

[16] V. P. Maslov, Asimptoticheskie metody i teoriya vozmuschenii, Nauka, M., 1988 | MR | Zbl

[17] V. P. Maslov, M. V. Fedoryuk, Kvaziklassicheskoe priblizhenie dlya uravnenii kvantovoi mekhaniki, Nauka, M., 1976 | MR | MR | Zbl

[18] V. R. Kogan, Izv. vuzov. Ser. Radiofizika, 12:11 (1969), 1675–1680 | DOI | MR

[19] V. V. Kucherenko, TMF, 1:3 (1969), 384–406 | DOI | MR

[20] V. A. Geiler, V. A. Margulis, I. I. Chuchaev, Sib. matem. zhurn., 36:4 (1995), 828–841 | DOI | MR | Zbl

[21] L. D. Landau, E. M. Lifshits, Teoreticheskaya fizika, v. III, Kvantovaya mekhanika. Nerelyativistskaya teoriya, Nauka, M., 2001 | MR | MR | Zbl

[22] E. Yanke, F. Emde, F. Lesh, Spetsialnye funktsii. Formuly, grafiki, tablitsy, Nauka, M., 1964 | MR | MR | Zbl

[23] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii, v. I, Gipergeometricheskaya funktsiya. Funktsii Lezhandra, Nauka, M., 1973 | MR | MR | Zbl