The Korteweg–de Vries equation with a self-consistent source in the class of periodic functions
Teoretičeskaâ i matematičeskaâ fizika, Tome 164 (2010) no. 2, pp. 214-221 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We use the inverse spectral problem method to integrate the Korteweg–de Vries equation with a self-consistent source in the class of periodic functions.
Keywords: Sturm–Liouville operator, spectral data, system of Dubrovin equations, Korteweg–de Vries equation with a self-consistent source.
@article{TMF_2010_164_2_a3,
     author = {A. B. Khasanov and A. B. Yakhshimuratov},
     title = {The~Korteweg{\textendash}de {Vries} equation with a~self-consistent source in the~class of periodic functions},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {214--221},
     year = {2010},
     volume = {164},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2010_164_2_a3/}
}
TY  - JOUR
AU  - A. B. Khasanov
AU  - A. B. Yakhshimuratov
TI  - The Korteweg–de Vries equation with a self-consistent source in the class of periodic functions
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2010
SP  - 214
EP  - 221
VL  - 164
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2010_164_2_a3/
LA  - ru
ID  - TMF_2010_164_2_a3
ER  - 
%0 Journal Article
%A A. B. Khasanov
%A A. B. Yakhshimuratov
%T The Korteweg–de Vries equation with a self-consistent source in the class of periodic functions
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2010
%P 214-221
%V 164
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2010_164_2_a3/
%G ru
%F TMF_2010_164_2_a3
A. B. Khasanov; A. B. Yakhshimuratov. The Korteweg–de Vries equation with a self-consistent source in the class of periodic functions. Teoretičeskaâ i matematičeskaâ fizika, Tome 164 (2010) no. 2, pp. 214-221. http://geodesic.mathdoc.fr/item/TMF_2010_164_2_a3/

[1] S. P. Novikov, Funkts. analiz i ego pril., 8:3 (1974), 54–66 | DOI | MR | Zbl

[2] B. A. Dubrovin, Funkts. analiz i ego pril., 9:3 (1975), 41–51 | DOI | MR | Zbl

[3] B. A. Dubrovin, S. P. Novikov, ZhETF, 67:12 (1974), 2131–2143 | MR

[4] A. R. Its, V. B. Matveev, TMF, 23:1 (1975), 51–68 | DOI | MR

[5] P. D. Lax, “Periodic solutions of the KdV equations”, Nonlinear Wave Motion, Lecture Appl. Math., 15, eds. A. C. Newell, AMS, Providence, RI, 1974, 85–96 | MR | Zbl

[6] P. D. Lax, Comm. Pure Appl. Math., 28 (1975), 141–188 | DOI | MR | Zbl

[7] H. P. McKean, E. Trubowitz, Comm. Pure Appl. Math., 29:2 (1976), 143–226 | DOI | MR | Zbl

[8] V. A. Marchenko, Matem. sb., 95(137):3(11) (1974), 331–356 | DOI | MR | Zbl

[9] V. K. Melnikov, Metod integrirovaniya uravneniya Kortevega–de Vrisa s samosoglasovannym istochnikom, Preprint, OIYaI, Dubna, 1988 | MR

[10] V. K. Mel'nikov, Inverse Problems, 8:1 (1992), 133–147 | DOI | MR | Zbl

[11] J. Leon, A. Latifi, J. Phys. A, 23:8 (1990), 1385–1403 | DOI | MR | Zbl

[12] G. U. Urazboev, A. B. Khasanov, TMF, 129:1 (2001), 38–54 | DOI | MR | Zbl

[13] A. B. Khasanov, G. U. Urazboev, Uzb. matem. zhurn., 2003, no. 2, 53–59 | MR

[14] P. G. Grinevich, I. A. Taimanov, “Spectral conservation laws for periodic nonlinear equations of the Melnikov type”, Geometry, Topology, and Mathematical Physics, Amer. Math. Soc. Transl. Ser. 2, 224, eds. V. M. Buchstaber, I. M. Krichever, AMS, Providence, RI, 2008, 125–138 | MR | Zbl

[15] A. Yu. Orlov, E. I. Schulman, Lett. Math. Phys., 12:3 (1986), 171–179 | DOI | MR | Zbl