Integrable vector evolution equations admitting zeroth-order conserved densities
Teoretičeskaâ i matematičeskaâ fizika, Tome 164 (2010) no. 2, pp. 207-213 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the symmetry approach framework, we solve the problem of classifying third-order integrable vector evolution equations that have zeroth-order conserved densities. We obtain the complete list of nine equations of this form. Two equations in the list were previously unknown. We find auto-Bäcklund transformations for the new equations.
Keywords: canonical density, integrable evolution equation, Bäcklund transformation.
@article{TMF_2010_164_2_a2,
     author = {M. Yu. Balakhnev and A. G. Meshkov},
     title = {Integrable vector evolution equations admitting zeroth-order conserved densities},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {207--213},
     year = {2010},
     volume = {164},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2010_164_2_a2/}
}
TY  - JOUR
AU  - M. Yu. Balakhnev
AU  - A. G. Meshkov
TI  - Integrable vector evolution equations admitting zeroth-order conserved densities
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2010
SP  - 207
EP  - 213
VL  - 164
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2010_164_2_a2/
LA  - ru
ID  - TMF_2010_164_2_a2
ER  - 
%0 Journal Article
%A M. Yu. Balakhnev
%A A. G. Meshkov
%T Integrable vector evolution equations admitting zeroth-order conserved densities
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2010
%P 207-213
%V 164
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2010_164_2_a2/
%G ru
%F TMF_2010_164_2_a2
M. Yu. Balakhnev; A. G. Meshkov. Integrable vector evolution equations admitting zeroth-order conserved densities. Teoretičeskaâ i matematičeskaâ fizika, Tome 164 (2010) no. 2, pp. 207-213. http://geodesic.mathdoc.fr/item/TMF_2010_164_2_a2/

[1] A. G. Meshkov, V. V. Sokolov, Comm. Math. Phys., 232:1 (2002), 1–18 | DOI | MR | Zbl

[2] A. G. Meshkov, V. V. Sokolov, TMF, 139:2 (2004), 192–208 | DOI | MR | Zbl

[3] S. I. Svinolupov, V. V. Sokolov, TMF, 100:2 (1994), 214–218 | DOI | MR | Zbl

[4] M. Yu. Balakhnev, TMF, 142:1 (2005), 13–20 | DOI | MR | Zbl

[5] M. Ju. Balakhnev, A. G. Meshkov, J. Nonlinear Math. Phys., 15:2 (2008), 212–226 | DOI | MR | Zbl

[6] N. Kh. Ibragimov, A. B. Shabat, Funkts. analiz i ego pril., 14:4 (1980), 79–80 | DOI | MR | Zbl

[7] S. I. Svinolupov, V. V. Sokolov, Funkts. analiz i ego pril., 16:4 (1982), 86–87 | DOI | MR | Zbl

[8] H. H. Chen, Y. C. Lee, C. S. Liu, Phys. Scripta, 20:3–4 (1979), 490–492 | DOI | MR | Zbl

[9] A. G. Meshkov, Inverse Problems, 10:3 (1994), 635–653 | DOI | MR | Zbl

[10] V. V. Sokolov, A. B. Shabat, Sov. Sci. Rev. C, 4 (1984), 221–280 | MR | Zbl

[11] A. V. Mikhailov, A. B. Shabat, V. V. Sokolov, “Simmetriinyi podkhod k klassifikatsii integriruemykh uravnenii”, Integriruemost i kineticheskie uravneniya dlya solitonov, eds. V. G. Bakhtaryar, V. E. Zakharov, V. M. Chernousenko, Naukova dumka, Kiev, 1990, 213–279 | MR | MR | Zbl

[12] A. G. Meshkov, M. Ju. Balakhnev, SIGMA, 1 (2005), 027, 11 pp. | DOI | MR | Zbl