Some integral equations related to random Gaussian processes
Teoretičeskaâ i matematičeskaâ fizika, Tome 164 (2010) no. 2, pp. 196-206
Voir la notice de l'article provenant de la source Math-Net.Ru
To calculate the Laplace transform of the integral of the square of a random Gaussian process, we consider a nonlinear Volterra-type integral equation. This equation is a Ward identity for the generating correlation function. It turns out that for an important class of correlation functions, this identity reduces to a linear ordinary differential equation. We present sufficient conditions for this equation to be integrable (the equation coefficients are constant). We calculate the Laplace transform exactly for some concrete random Gaussian processes such as the “Brownian bridge” model and the Ornstein–Uhlenbeck model.
Keywords:
random process, integral equation
Mots-clés : Laplace transform.
Mots-clés : Laplace transform.
@article{TMF_2010_164_2_a1,
author = {V. G. Marikhin and V. V. Sokolov},
title = {Some integral equations related to random {Gaussian} processes},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {196--206},
publisher = {mathdoc},
volume = {164},
number = {2},
year = {2010},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2010_164_2_a1/}
}
TY - JOUR AU - V. G. Marikhin AU - V. V. Sokolov TI - Some integral equations related to random Gaussian processes JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2010 SP - 196 EP - 206 VL - 164 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2010_164_2_a1/ LA - ru ID - TMF_2010_164_2_a1 ER -
V. G. Marikhin; V. V. Sokolov. Some integral equations related to random Gaussian processes. Teoretičeskaâ i matematičeskaâ fizika, Tome 164 (2010) no. 2, pp. 196-206. http://geodesic.mathdoc.fr/item/TMF_2010_164_2_a1/