@article{TMF_2010_164_2_a0,
author = {A. V. Razumov and Yu. G. Stroganov},
title = {A~possible combinatorial point for {the~XYZ} spin chain},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {179--195},
year = {2010},
volume = {164},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2010_164_2_a0/}
}
A. V. Razumov; Yu. G. Stroganov. A possible combinatorial point for the XYZ spin chain. Teoretičeskaâ i matematičeskaâ fizika, Tome 164 (2010) no. 2, pp. 179-195. http://geodesic.mathdoc.fr/item/TMF_2010_164_2_a0/
[1] B. Sutherland, J. Math. Phys., 11:11 (1970), 3183–3186 | DOI
[2] R. J. Baxter, Phys. Rev. Lett., 26:14 (1971), 832–833 | DOI
[3] R. J. Baxter, Ann. Phys., 70:1 (1972), 193–228 | DOI | MR | Zbl
[4] R. J. Baxter, Phys. Rev. Lett., 26:14 (1971), 834–834 | DOI
[5] R. J. Baxter, Ann. Phys., 70:2 (1972), 323–337 | DOI | MR
[6] R. J. Baxter, “Solving models in statistical mechanics”, Integrable Systems in Quantum Field Theory and Statistical Mechanics, Adv. Stud. Pure Math., 19, eds. M. Jimbo, T. Miwa, A. Tsuchiya, Math. Soc. Japan, Tokyo; Academic Press, Boston, MA, 1989, 95–116 | MR | Zbl
[7] Yu. G. Stroganov, “The 8-vertex model with a special value of the crossing parameter and the related $XYZ$ spin chain”, Integrable Structures of Exactly Solvable Two-Dimensional Models of Quantum Field Theory, NATO Sci. Ser. II Math. Phys. Chem., 35, eds. S. Pakulyak, G. von Gehlen, Kluwer, Dordrecht, 2001, 315–319 | MR | Zbl
[8] X. Yang, P. Fendley, J. Phys. A, 37:38 (2004), 8937–8948, arXiv: cond-mat/0404682 | DOI | MR | Zbl
[9] G. Veneziano, J. Wosiek, JHEP, 2006:11 (2006), 030, 18 pp., arXiv: hep-th/0609210 | DOI | MR
[10] A. V. Razumov, Yu. G. Stroganov, P. Zinn-Justin, J. Phys. A, 40:39 (2007), 11827–11847, arXiv: 0704.3542 | DOI | MR | Zbl
[11] V. Fridkin, Yu. Stroganov, D. Zagier, J. Phys. A, 33:13 (2000), L121–L125, arXiv: hep-th/9912252 | DOI | MR | Zbl
[12] V. Fridkin, Yu. Stroganov, D. Zagier, J. Stat. Phys., 102:3–4 (2001), 781–794, arXiv: nlin/0010021 | DOI | MR | Zbl
[13] Yu. G. Stroganov, J. Phys. A, 34:13 (2001), L179–L185, arXiv: cond-mat/0012035 | DOI | MR | Zbl
[14] Yu. G. Stroganov, TMF, 129:2 (2001), 345–359 | DOI | MR | Zbl
[15] A. V. Razumov, Yu. G. Stroganov, J. Phys. A, 34:14 (2001), 3185–3190, arXiv: cond-mat/0012141 | DOI | MR | Zbl
[16] A. V. Razumov, Yu. G. Stroganov, J. Stat. Mech., 2006:7 (2006), P07004, 12 pp., arXiv: math-ph/0605004 | DOI | MR
[17] N. Kitanine, J. M. Maillet, N. A. Slavnov, V. Terras, J. Phys. A, 35:27 (2002), L385–L388, arXiv: hep-th/0201134 | DOI | MR | Zbl
[18] N. Kitanine, J. M. Maillet, N. A. Slavnov, V. Terras, J. Phys. A, 35:49 (2002), L753–L758, arXiv: hep-th/0210019 | DOI | MR | Zbl
[19] P. Di Francesco, P. Zinn-Justin, J.-B. Zuber, J. Stat. Mech., 2006:8 (2006), P08011, arXiv: math-ph/0603009 | DOI
[20] M. T. Batchelor, J. de Gier, B. Nienhuis, J. Phys. A, 34:19 (2001), L265–L270, arXiv: cond-mat/0101385 | DOI | MR | Zbl
[21] A. V. Razumov, Yu. G. Stroganov, J. Phys. A, 34:26 (2001), 5335–5340, arXiv: cond-mat/0102247 | DOI | MR | Zbl
[22] V. V. Bazhanov, V. V. Mangazeev, J. Phys. A, 38:8 (2005), L145–L153, arXiv: hep-th/0411094 | DOI | MR | Zbl
[23] V. V. Bazhanov, V. V. Mangazeev, J. Phys. A, 39:39 (2006), 12235–12243, arXiv: hep-th/0602122 | DOI | MR | Zbl
[24] R. Bekster, Tochno reshaemye modeli v statisticheskoi mekhanike, Mir, M., 1985 | MR | MR | Zbl
[25] Yu. G. Stroganov, Phys. Lett. A, 74:1–2 (1979), 116–118 | DOI | MR
[26] R. J. Baxter, “Exactly solved models”, Fundamental Problems in Statistical Mechanics V, ed. E. G. D. Cohen, North Holland, Amsterdam, New York, 1980, 109–141 | MR
[27] R. J. Baxter, J. Stat. Phys., 28:1 (1982), 1–41 | DOI | MR
[28] D. P. Robbins, Symmetry classes of alternating sign matrices, arXiv: math.CO/0008045
[29] G. Kuperberg, Ann. Math., 156:3 (2002), 835–866, arXiv: math.CO/0008184 | DOI | MR | Zbl
[30] A. V. Razumov, Yu. G. Stroganov, TMF, 141:3 (2004), 323–347, arXiv: math-ph/0312071 | DOI | MR | Zbl
[31] W. H. Mills, D. P. Robbins, H. Rumsey Jr., J. Combin. Theory Ser. A, 34:3 (1983), 340–359 | DOI | MR | Zbl