Vacuum symmetries in brane-world models
Teoretičeskaâ i matematičeskaâ fizika, Tome 164 (2010) no. 1, pp. 141-156 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We discuss the symmetries of vacuum configurations in stabilized five-dimensional brane-world models and their relation to the properties of solutions of the corresponding equations of motion. With the example of a model admitting the four-dimensional de Sitter metric on the branes, we show that the existence of such symmetries in some cases leads to a decrease in the number of fundamental parameters to be fine tuned.
Mots-clés : extra dimension
Keywords: brane-world model, cosmological constant.
@article{TMF_2010_164_1_a8,
     author = {I. S. Grinin and S. R. Ramazanov and M. N. Smolyakov},
     title = {Vacuum symmetries in brane-world models},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {141--156},
     year = {2010},
     volume = {164},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2010_164_1_a8/}
}
TY  - JOUR
AU  - I. S. Grinin
AU  - S. R. Ramazanov
AU  - M. N. Smolyakov
TI  - Vacuum symmetries in brane-world models
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2010
SP  - 141
EP  - 156
VL  - 164
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2010_164_1_a8/
LA  - ru
ID  - TMF_2010_164_1_a8
ER  - 
%0 Journal Article
%A I. S. Grinin
%A S. R. Ramazanov
%A M. N. Smolyakov
%T Vacuum symmetries in brane-world models
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2010
%P 141-156
%V 164
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2010_164_1_a8/
%G ru
%F TMF_2010_164_1_a8
I. S. Grinin; S. R. Ramazanov; M. N. Smolyakov. Vacuum symmetries in brane-world models. Teoretičeskaâ i matematičeskaâ fizika, Tome 164 (2010) no. 1, pp. 141-156. http://geodesic.mathdoc.fr/item/TMF_2010_164_1_a8/

[1] V. A. Rubakov, M. E. Shaposhnikov, Phys. Lett. B, 125:2–3 (1983), 136–138 | DOI

[2] V. A. Rubakov, M. E. Shaposhnikov, Phys. Lett. B, 125:2–3 (1983), 139–143 | DOI

[3] J. Polchinski, TASI lectures on D-branes, 1996; arXiv: hep-th/9611050

[4] E. Witten, Nucl. Phys. B, 471:1–2 (1996), 135–158 ; arXiv: hep-th/9602070 | DOI | MR | Zbl

[5] J. D. Lykken, Phys. Rev. D, 54:6 (1996), 3693–3697 ; arXiv: hep-th/9603133 | DOI | MR

[6] C. P. Bachas, “Lectures on D-branes”, Duality and Supersymmetric Theories, Publ. Newton Inst., eds. D. I. Olive, P. C. West, Cambridge Univ. Press, Cambridge, 1999, 414–473 ; arXiv: hep-th/9806199 | MR | Zbl

[7] I. Antoniadis, Eur. Phys. J. C, 33, Suppl. 1 (2004), S914–S918 | DOI

[8] L. Randall, R. Sundrum, Phys. Rev. Lett., 83:17 (1999), 3370–3373 | DOI | MR | Zbl

[9] V. A. Rubakov, UFN, 171 (2001), 913 | DOI

[10] O. DeWolfe, D. Z. Freedman, S. S. Gubser, A. Karch, Phys. Rev. D, 62:4 (2000), 046008 ; arXiv: hep-th/9909134 | DOI | MR

[11] E. E. Boos, I. P. Volobuev, Yu. C. Mikhailov, M. N. Smolyakov, TMF, 149:3 (2006), 339–353 | DOI | MR | Zbl

[12] P. Brax, C. van de Bruck, Class. Quant. Grav., 20:9 (2003), R201–R232 ; arXiv: hep-th/0303095 | DOI | MR | Zbl

[13] P. Brax, C. van de Bruck, A.-C. Davis, Rep. Progr. Phys., 67:12 (2004), 2183–2232 ; arXiv: hep-th/0404011 | DOI | MR

[14] N. Kaloper, Phys. Rev. D, 60:12 (1999), 123506 ; arXiv: hep-th/9905210 | DOI | MR

[15] A. Karch, L. Randall, JHEP, 05 (2001), 008 ; arXiv: hep-th/0011156 | DOI | MR

[16] P. Binétruy, C. Deffayet, U. Ellwanger, D. Langlois, Phys. Lett. B, 477:1–3 (2000), 285–291 ; arXiv: hep-th/9910219 | DOI | MR

[17] J. M. Cline, H. Firouzjahi, Phys. Lett. B, 514:3–4 (2001), 205–212 ; arXiv: hep-th/0012090 | DOI | Zbl

[18] P. Kanti, S. C. Lee, K. A. Olive, Phys. Rev. D, 67:2 (2003), 024037 ; arXiv: hep-th/0209036 | DOI | MR

[19] S. Veinberg, Gravitatsiya i Kosmologiya, Platon, Volgograd, 2000

[20] P. Ramon, Teoriya polya. Sovremennyi vvodnyi kurs, Mir, M., 1984 | MR | MR | Zbl

[21] C. Wetterich, Phys. Rev. Lett., 102:14 (2009), 141303 ; arXiv: 0806.0741 | DOI | MR

[22] C. Wetterich, The cosmological constant and higher dimensional dilatation symmetry; 2009, arXiv: 0911.1063

[23] L. D. Landau, E. M. Lifshits, Teoreticheskaya fizika, v. II, Teoriya polya, Fizmatlit, M., 1967 | MR | MR | Zbl

[24] Yu. A. Kubyshin, Models with extra dimensions and their phenomenology, arXiv: hep-ph/0111027

[25] E. E. Boos, I. P. Volobuev, Yu. A. Kubyshin, M. N. Smolyakov, TMF, 131:2 (2002), 216–230 | DOI | Zbl

[26] A. Brandhuber, K. Sfetsos, JHEP, 10:10 (1999), 013 ; arXiv: hep-th/9908116 | DOI | MR | Zbl

[27] A. Aurilia, H. Nicolai, P. K. Townsend, “Spontaneous breaking of supersymmetry and the cosmological constant in ${N=8}$ supergravity”, Superspace and Supergravity, eds. S. W. Hawking, M. Roček, Cambridge Univ. Press, Cambridge, New York, 1981, 403–412 ; TH.2884–CERN, 1980 http://ccdb4fs.kek.jp/ cgi-bin /img/ allpdf?198007255 | MR | Zbl

[28] A. Aurilia, H. Nicolai, P. K. Townsend, Nucl. Phys. B, 176:2 (1980), 509–522 | DOI | MR

[29] M. Henneaux, C. Teitelboim, Phys. Lett. B, 143:4–6 (1984), 415–420 | DOI | MR

[30] S. W. Hawking, Phys. Lett. B, 134:6 (1984), 403–404 | DOI

[31] S. Weinberg, Rev. Modern Phys., 61:1 (1989), 1–23 | DOI | MR | Zbl

[32] H. Bondi, T. Gold, Monthly Not. Roy. Astr. Soc., 108 (1948), 252–270 | DOI | Zbl

[33] F. Hoyle, Monthly Not. Roy. Astr. Soc., 108 (1948), 372–382 | DOI | Zbl

[34] F. Hoyle, Monthly Not. Roy. Astr. Soc., 109 (1949), 365–371 | DOI | Zbl