The~ring of physical states in the~$M(2,3)$ minimal Liouville gravity
Teoretičeskaâ i matematičeskaâ fizika, Tome 164 (2010) no. 1, pp. 119-140
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the $M(2,3)$ minimal Liouville gravity, whose state space in the gravity sector is realized as irreducible modules of the Virasoro algebra. We present a recursive construction for BRST cohomology classes based on using an explicit form of singular vectors in irreducible modules of the Virasoro algebra. We find a certain algebra acting on the BRST cohomology space and use this algebra to find the operator algebra of physical states.
Keywords:
conformal field theory, Liouville gravity, BRST cohomology.
@article{TMF_2010_164_1_a7,
author = {O. V. Alekseev and M. A. Bershtein},
title = {The~ring of physical states in the~$M(2,3)$ minimal {Liouville} gravity},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {119--140},
publisher = {mathdoc},
volume = {164},
number = {1},
year = {2010},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2010_164_1_a7/}
}
TY - JOUR AU - O. V. Alekseev AU - M. A. Bershtein TI - The~ring of physical states in the~$M(2,3)$ minimal Liouville gravity JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2010 SP - 119 EP - 140 VL - 164 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2010_164_1_a7/ LA - ru ID - TMF_2010_164_1_a7 ER -
O. V. Alekseev; M. A. Bershtein. The~ring of physical states in the~$M(2,3)$ minimal Liouville gravity. Teoretičeskaâ i matematičeskaâ fizika, Tome 164 (2010) no. 1, pp. 119-140. http://geodesic.mathdoc.fr/item/TMF_2010_164_1_a7/