Entropic measure of the order–disorder character in lattice systems in the representation of coordination Cayley tree graphs
Teoretičeskaâ i matematičeskaâ fizika, Tome 164 (2010) no. 1, pp. 88-107 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We systematically expound the infodynamical method for analyzing lattice and grid systems. We establish the logic and algorithm for mapping given objects to coordination Cayley tree graphs and present their main properties. Tree graphs of grid systems are complicated objects, and the principle of cluster-type simplicial decomposition can be used to study them. Based on a simplicial decomposition, we construct the enumerating structures, from which we construct entropy-type functionals. We pose the percolation problem on Cayley tree graphs in a nonconventional sense, which may be considered for both enumerating structures and their entropies. The corresponding entropy percolational dependences and their critical indices can be considered sufficiently universal measures of order in lattice systems. The simpliciality also implies an analogy with the fractality principle. We introduce three types of fractal characteristics and give analytic expressions for fractal dimensions for the tangential and streamer representations and for the Mandelbrot shell.
Keywords: generalized lattice system, coordination Cayley tree graph, Weide entropy, long-range order, extra-dimensional percolation.
Mots-clés : simplicial decomposition, Bongard divergence, fractal dimension
@article{TMF_2010_164_1_a5,
     author = {V. V. Yudin and P. L. Titov and A. N. Mikhalyuk},
     title = {Entropic measure of the~order{\textendash}disorder character in lattice systems in the~representation of coordination {Cayley} tree graphs},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {88--107},
     year = {2010},
     volume = {164},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2010_164_1_a5/}
}
TY  - JOUR
AU  - V. V. Yudin
AU  - P. L. Titov
AU  - A. N. Mikhalyuk
TI  - Entropic measure of the order–disorder character in lattice systems in the representation of coordination Cayley tree graphs
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2010
SP  - 88
EP  - 107
VL  - 164
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2010_164_1_a5/
LA  - ru
ID  - TMF_2010_164_1_a5
ER  - 
%0 Journal Article
%A V. V. Yudin
%A P. L. Titov
%A A. N. Mikhalyuk
%T Entropic measure of the order–disorder character in lattice systems in the representation of coordination Cayley tree graphs
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2010
%P 88-107
%V 164
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2010_164_1_a5/
%G ru
%F TMF_2010_164_1_a5
V. V. Yudin; P. L. Titov; A. N. Mikhalyuk. Entropic measure of the order–disorder character in lattice systems in the representation of coordination Cayley tree graphs. Teoretičeskaâ i matematičeskaâ fizika, Tome 164 (2010) no. 1, pp. 88-107. http://geodesic.mathdoc.fr/item/TMF_2010_164_1_a5/

[1] J. M. Ziman, Models of Disorder, Cambridge Univ. Press, Cambridge, 1979 | MR

[2] R. Bekster, Tochno reshaemye modeli v statisticheskoi mekhanike, Mir, M., 1985 | MR | MR | Zbl

[3] A. I. Gusev, Nestekhiometriya, besporyadok, blizhnii i dalnii poryadok v tverdom tele, Fizmatlit, M., 2007

[4] M. Kleman, O. D. Lavrentovich, Osnovy fiziki chastichno uporyadochennykh sred, Fizmatlit, M., 2007

[5] N. N. Medvedev, Metod Voronogo–Delone v issledovanii struktury nekristallicheskikh sistem, Izd-vo SO RAN, Novosibirsk, 2000 | Zbl

[6] A. V. Anikeenko, N. N. Medvedev, T. Aste, Phys. Rev. E, 77:3 (2008), 031101 | DOI

[7] D. Gratias, La Recherche, 178 (1986), 788–798; | DOI

[8] A. M. Bratkovskii, Yu. A. Danilov, G. I. Kuznetsov, FMM, 68:6 (1989), 1045–1095

[9] V. V. Yudin, Stokhasticheskaya magnitnaya struktura plenok s mikroporovoi sistemoi, Nauka, M., 1987

[10] V. V. Yudin, E. I. Rudik, A. V. Matokhin i dr., FTT, 24:2 (1982), 443

[11] V. V. Yudin, T. A. Pisarenko, E. A. Lyubchenko i dr., Kristallografiya, 44:3 (1999), 413

[12] E. A. Lyubchenko, Drevesnye grafy Keili v issledovanii setochnykh struktur mezodefektov kvartsevykh stekol, Dis. $\dots$ kand. fiz.-matem. nauk, DVGU, Vladivostok, 1999

[13] V. V. Yudin, T. A. Pisarenko, E. A. Lyubchenko i dr., Kristallografiya, 47:2 (2002), 224–231 | DOI

[14] T. A. Pisarenko, Fraktalnost setochnykh sistem mezodefektov metallicheskikh i kvartsevykh stekol v spektralnom i drevesno-grafovom predstavleniyakh, Dis. $\dots$ kand. fiz.-matem. nauk, DVGU, Vladivostok, 2000

[15] V. V. Yudin, T. A. Pisarenko, E. A. Lyubchenko, Informodinamika setevykh struktur. Veroyatnost. Drevesnye grafy. Fraktaly, DVGU, Vladivostok, 2003

[16] V. V. Yudin, S. A. Schegoleva, T. A. Pisarenko, FTT, 43:11 (2001), 1991–1998 | DOI

[17] S. A. Schegoleva, T. A. Pisarenko, V. V. Yudin, Poverkhnost, 12 (2001), 15–24

[18] A. I. Olemskoi, I. V. Koplyk, UFN, 165:10 (1995), 1105–1144 | DOI

[19] G. Paul, H. E. Stanley, Phys. Rev. E, 67:2 (2003), 026103 ; arXiv: cond-mat/0210345 | DOI

[20] T. Brookings, J. M. Carlson, J. Doyle, Phys. Rev. E, 72:5 (2005), 056120 | DOI | MR

[21] J. L. Casti, Connectivity, Complexity, and Catastrophe in Large-Scale Systems, Internat. Ser. Appl. Systems Analys., 7, John Wiley Sons, New York, 1979 | MR | Zbl

[22] N. N. Moiseev, Matematicheskie zadachi sistemnogo analiza, Nauka, M., 1981 | MR

[23] G. E. Shilov, B. L. Gurevich, Integral, mera i proizvodnaya, Nauka, M., 1967 | MR | Zbl

[24] N. Martin, Dzh. Inglend, Matematicheskaya teoriya entropii, Mir, M., 1988 | MR | MR | Zbl

[25] M. A. Aizerman, E. R. Kayanello (red.), Issledovaniya po teorii struktur, Sbornik nauchnykh trudov, Nauka, M., 1988 | MR | Zbl

[26] F. Harari, E. M. Palmer, Graphical Enumeration, Academic Press, New York, 1973 | MR | Zbl

[27] A. I. Olemskoi, A. Ya. Flat, UFN, 163:12 (1993), 1–50 | DOI

[28] H.-O. Peitgen, H. Jürgens, D. Saupe, Chaos and Fractals, Springer, New York, 2004 | MR | Zbl

[29] Ya. B. Zeldovich, D. D. Sokolov, UFN, 146:3 (1985), 493–506 | DOI | MR | Zbl

[30] V. V. Yudin, T. A. Pisarenko, E. A. Lyubchenko, O. A. Chudnova, Izv. RAN. Ser. fiz., 65:10 (2001), 1405–1410

[31] D. A. Polyanskii, Teoretiko-informatsionnyi analiz minimalnogo klassa kvazikristallicheskikh struktur, Dis. $\dots$ kand. fiz.-matem. nauk, DVGU, Vladivostok, 2005

[32] V. V. Yudin, Yu. A. Karygina, Kristallografiya, 46:6 (2001), 1004–1008 | DOI

[33] V. M. Zolotarev, Sovremennaya teoriya summirovaniya nezavisimykh sluchainykh velichin, Nauka, M., 1986 | MR | MR | Zbl

[34] V. V. Yudin, P. L. Titov, A. N. Mikhalyuk, Izv. RAN. Ser. fiz., 73:9 (2009), 1340–1347 | DOI | Zbl