Entropic measure of the~order--disorder character in lattice systems in the~representation of coordination Cayley tree graphs
Teoretičeskaâ i matematičeskaâ fizika, Tome 164 (2010) no. 1, pp. 88-107

Voir la notice de l'article provenant de la source Math-Net.Ru

We systematically expound the infodynamical method for analyzing lattice and grid systems. We establish the logic and algorithm for mapping given objects to coordination Cayley tree graphs and present their main properties. Tree graphs of grid systems are complicated objects, and the principle of cluster-type simplicial decomposition can be used to study them. Based on a simplicial decomposition, we construct the enumerating structures, from which we construct entropy-type functionals. We pose the percolation problem on Cayley tree graphs in a nonconventional sense, which may be considered for both enumerating structures and their entropies. The corresponding entropy percolational dependences and their critical indices can be considered sufficiently universal measures of order in lattice systems. The simpliciality also implies an analogy with the fractality principle. We introduce three types of fractal characteristics and give analytic expressions for fractal dimensions for the tangential and streamer representations and for the Mandelbrot shell.
Keywords: generalized lattice system, coordination Cayley tree graph, Weide entropy, long-range order, extra-dimensional percolation.
Mots-clés : simplicial decomposition, Bongard divergence, fractal dimension
@article{TMF_2010_164_1_a5,
     author = {V. V. Yudin and P. L. Titov and A. N. Mikhalyuk},
     title = {Entropic measure of the~order--disorder character in lattice systems in the~representation of coordination {Cayley} tree graphs},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {88--107},
     publisher = {mathdoc},
     volume = {164},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2010_164_1_a5/}
}
TY  - JOUR
AU  - V. V. Yudin
AU  - P. L. Titov
AU  - A. N. Mikhalyuk
TI  - Entropic measure of the~order--disorder character in lattice systems in the~representation of coordination Cayley tree graphs
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2010
SP  - 88
EP  - 107
VL  - 164
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2010_164_1_a5/
LA  - ru
ID  - TMF_2010_164_1_a5
ER  - 
%0 Journal Article
%A V. V. Yudin
%A P. L. Titov
%A A. N. Mikhalyuk
%T Entropic measure of the~order--disorder character in lattice systems in the~representation of coordination Cayley tree graphs
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2010
%P 88-107
%V 164
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2010_164_1_a5/
%G ru
%F TMF_2010_164_1_a5
V. V. Yudin; P. L. Titov; A. N. Mikhalyuk. Entropic measure of the~order--disorder character in lattice systems in the~representation of coordination Cayley tree graphs. Teoretičeskaâ i matematičeskaâ fizika, Tome 164 (2010) no. 1, pp. 88-107. http://geodesic.mathdoc.fr/item/TMF_2010_164_1_a5/