Study of the~essential spectrum of a~matrix operator
Teoretičeskaâ i matematičeskaâ fizika, Tome 164 (2010) no. 1, pp. 62-77

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a matrix operator $H$ corresponding to a system with a nonconserved finite number of particles on a lattice. We describe the structure of the essential spectrum of the operator $H$ and prove that the essential spectrum is a union of at most four intervals.
Keywords: matrix operator, system with a nonconserved finite number of particles, Fock space, generalized Friedrichs model, essential spectrum, eigenvalue.
@article{TMF_2010_164_1_a3,
     author = {T. H. Rasulov},
     title = {Study of the~essential spectrum of a~matrix operator},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {62--77},
     publisher = {mathdoc},
     volume = {164},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2010_164_1_a3/}
}
TY  - JOUR
AU  - T. H. Rasulov
TI  - Study of the~essential spectrum of a~matrix operator
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2010
SP  - 62
EP  - 77
VL  - 164
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2010_164_1_a3/
LA  - ru
ID  - TMF_2010_164_1_a3
ER  - 
%0 Journal Article
%A T. H. Rasulov
%T Study of the~essential spectrum of a~matrix operator
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2010
%P 62-77
%V 164
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2010_164_1_a3/
%G ru
%F TMF_2010_164_1_a3
T. H. Rasulov. Study of the~essential spectrum of a~matrix operator. Teoretičeskaâ i matematičeskaâ fizika, Tome 164 (2010) no. 1, pp. 62-77. http://geodesic.mathdoc.fr/item/TMF_2010_164_1_a3/