Study of the essential spectrum of a matrix operator
Teoretičeskaâ i matematičeskaâ fizika, Tome 164 (2010) no. 1, pp. 62-77 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a matrix operator $H$ corresponding to a system with a nonconserved finite number of particles on a lattice. We describe the structure of the essential spectrum of the operator $H$ and prove that the essential spectrum is a union of at most four intervals.
Keywords: matrix operator, system with a nonconserved finite number of particles, Fock space, generalized Friedrichs model, essential spectrum, eigenvalue.
@article{TMF_2010_164_1_a3,
     author = {T. H. Rasulov},
     title = {Study of the~essential spectrum of a~matrix operator},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {62--77},
     year = {2010},
     volume = {164},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2010_164_1_a3/}
}
TY  - JOUR
AU  - T. H. Rasulov
TI  - Study of the essential spectrum of a matrix operator
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2010
SP  - 62
EP  - 77
VL  - 164
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2010_164_1_a3/
LA  - ru
ID  - TMF_2010_164_1_a3
ER  - 
%0 Journal Article
%A T. H. Rasulov
%T Study of the essential spectrum of a matrix operator
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2010
%P 62-77
%V 164
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2010_164_1_a3/
%G ru
%F TMF_2010_164_1_a3
T. H. Rasulov. Study of the essential spectrum of a matrix operator. Teoretičeskaâ i matematičeskaâ fizika, Tome 164 (2010) no. 1, pp. 62-77. http://geodesic.mathdoc.fr/item/TMF_2010_164_1_a3/

[1] T. Kh. Rasulov, Izv. vuzov. Matem., 2008, no. 12, 59–69 | DOI | MR | Zbl

[2] T. Kh. Rasulov, Matem. zametki, 83:1 (2008), 86–94 | DOI | MR | Zbl

[3] S. N. Lakaev, T. Kh. Rasulov, Matem. zametki, 73:4 (2003), 556–564 | DOI | MR | Zbl

[4] T. Kh. Rasulov, TMF, 152:3 (2007), 518–527 | DOI | MR | Zbl

[5] S. Albeverio, S. N. Lakaev, T. H. Rasulov, J. Stat. Phys., 127:2 (2007), 191–220 | DOI | MR | Zbl

[6] G. R. Edgorov, M. E. Muminov, TMF, 144:3 (2005), 544–554 | DOI | MR | Zbl

[7] T. Kh. Rasulov, TMF, 161:2 (2009), 164–175 | DOI | MR | Zbl

[8] R. A. Minlos, H. Spohn, “The three-body problem in radioactive decay: the case of one atom and at most two photons”, Topics in Statistical and Theoretical Physics, Amer. Math. Soc. Transl. Ser. 2, 177, eds. R. L. Dobrushin, R. A. Minlos, M. A. Shubin, A. M. Vershik, AMS, Providence, RI, 1996, 159–193 | MR | Zbl

[9] Yu. V. Zhukov, R. A. Minlos, TMF, 103:1 (1995), 63–81 | DOI | MR | Zbl

[10] G. M. Zhislin, Trudy MMO, 9, 1960, 81–120 | MR | Zbl

[11] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki, v. 4, Analiz operatorov, Mir, M., 1982 | MR | MR | Zbl

[12] S. Albeverio, S. N. Lakaev, Zh. I. Abdullaev, Funkts. analiz i ego pril., 36:3 (2002), 56–60 | DOI | MR | Zbl

[13] S. Albeverio, S. N. Lakaev, Z. I. Muminov, Math. Nachr., 280:7 (2007), 699–716 ; arXiv: math-ph/0312050 | DOI | MR | Zbl

[14] S. Albeverio, S. N. Lakaev, R. Kh. Djumanova, Rep. Math. Phys., 63:3 (2009), 359–380 ; arXiv: math-ph/0501024 | DOI | MR | Zbl

[15] P. Khalmosh, Gilbertovo prostranstvo v zadachakh, Mir, M., 1970 | MR | MR | Zbl