Study of the~essential spectrum of a~matrix operator
Teoretičeskaâ i matematičeskaâ fizika, Tome 164 (2010) no. 1, pp. 62-77
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider a matrix operator $H$ corresponding to a system with a nonconserved finite number of particles on a lattice. We describe the structure of the essential spectrum of the operator $H$ and prove that the essential spectrum is a union of at most four intervals.
Keywords:
matrix operator, system with a nonconserved finite number of particles, Fock space, generalized Friedrichs model, essential spectrum, eigenvalue.
@article{TMF_2010_164_1_a3,
author = {T. H. Rasulov},
title = {Study of the~essential spectrum of a~matrix operator},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {62--77},
publisher = {mathdoc},
volume = {164},
number = {1},
year = {2010},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2010_164_1_a3/}
}
T. H. Rasulov. Study of the~essential spectrum of a~matrix operator. Teoretičeskaâ i matematičeskaâ fizika, Tome 164 (2010) no. 1, pp. 62-77. http://geodesic.mathdoc.fr/item/TMF_2010_164_1_a3/